
Thesis for the degree of
Master of Science in Design of Telecommunication Systems

A VEHICLE TRACKING SYSTEM
BASED ON WSN

Albert Anglès Vázquez

Advisors: Jose López Vicario and Antoni Morell Pérez

Department of Telecommunications and Systems Engineering

Universitat Autònoma de Barcelona

Bellaterra, September 13, 2010

Abstract

This master thesis is covered under the XALOC project approved by the Autonomous Gov-

ernment of Catalonia under the INFOREGIO 2009 program. The purpose of this project is to

develop a vehicle localization and tracking system based on a Wireless Sensor Network which is

used to guide the driver to free parking slots. Every sensor with reference coordinates is placed

in each parking slot. The development of the project consists of two parts:

1. Theoretical development and validation: this part evaluates the positioning as well as

some of tracking algorithms by means of a developed Matlab simulator. The simulator is

implemented with graphical user interface to allow the possibility of simulating by modify-

ing some specified system control parameters. The simulator simulates several predefined

car routes in an urban region as the centre of Barcelona. Real-time vehicle positioning as

well as tracking is carried on when the car is moving. The vehicle positioning is obtained

by means of the RSSI of a specified number of reference sensors and a multilateration

technique (similar to the used in GPS representing the reference nodes as satellites). The

vehicle tracking is realized with the following tracking algorithms: Kalman Filter that

follows a uniform motion model, Extended Kalman Filter that follows the turns and a

weighted combination of both for the overall route with the IMM algorithm. Theoretical

analysis is realized to validate these algorithms for several scenarios.

2. Experimental development and validation: the experimental development deals with the

outdoor real-time positioning and tracking of a mobile node carried inside a car. For that a

Java-based navigator called ARID Navigator is implemented. This navigator shows the

real-time position of the driver on the map of the measurement scenario. The measurement

scenario is located at the Autonomous University of Barcelona’s fire department parking

and a measurements campaign is realized to adjust certain navigator’s parameters. These

parameters are mainly the Kalman parameters. In addition to the driver localization and

tracking, the navigator informs the driver either with graphical or audio interface the

number of free parking slots. Concerning the positioning technique for noisy environments

another improved technique in terms of average position error than the applied in the

theoretical study is developed.

i

Resum

Aquesta tesis de màster està coberta sota el projecte XALOC aprovat pel govern autònom

de Catalunya sota el programa INFOREGIÓ/AJUTS 2009. L’objectiu d’aquest projecte és

desenvolupar un sistema de seguiment i de localització de vehicles basat en una xarxa wireless

de sensors la qual s’utilitza per tal de guiar al conductor a trobar aparcaments lliures en zones

urbanes. Cada sensor amb coordenades de referència es localitza en cada plaça d’aparcament.

El desenvolupament del projecte consisteix en les següents parts:

1. Desenvolupament teòric i validació: aquesta part evalua les tècniques de posicionament

i seguiment de vehicles miatjançant un simulador de Matlab desenvolupat sota una in-

terf́ıcie gràfica d’usuari per facil·litar la simulaciò amb diferents paràmetres. El simulador

simula diferents rutes del coche en una regió urbana com la del centre de Barcelona. El

posicionament del vehicle a temps real aix́ı com el seguiment és dut a terme. Pel que fa

al posicionament, aquest s’obté a partir de les RSSI d’un nombre especificat de sensors

de referència amb una tècnica de posicionament similar a la de GPS. Pel que fa al segui-

ment del vehicle aquest es realitza mitjançant certs algoritmes de seguiment: en concret

un Kalman Filter que s’utilitza per seguir les trajectòries en moviment uniforme, un Ex-

tended Kalman Filter que segueix els girs del vehicle, i una combinació ponderada dels dos

a través d’un novedós algoritme anomenat IMM (Interacting Multiple Model). Un anàlisis

teòric és realitzat per tal de validar aquests algoritmes per diferents escenaris.

2. Desenvolupament experimental i validació: aquesta part té per objectiu el desenvolu-

pament d’un navegador anomenat ARID Navigator basat en Java. Aquest navegador

mostra la posició del conductor a temps real sobre un mapa de la zona. L’escenari de proves

es troba al parking de bombers de la Universitat Autònoma de Barcelona i una campa-

nya de mesures s’ha realitzat per tal d’ajustar certs paràmetres del navegador. Aquests

paràmetres impliquen paràmetres del Filtre de Kalman ja que aquest és utilitzat per seguir

la trajectòria del del vehicle en ĺınea recta. A més a més de la localització del conductor,

el navegador informa el nombre d’aparcaments lliures de manera gràfica sobre el mapa o

auditiva. Pel que fa a la localització s’ha empleat un mètode millor que el que s’ha fet

servir en la validació teòrica quan l’error de posicionament és gran.

iii

Resumen

Ésta tesis de máster esta cubierta bajo el proyecto XALOC aprovado por el gobierno autónomo

de Cataluña bajo el programa INFOREGIÓ/AYUDAS 2009. El objetivo de este proyecto es el

desarrollo de un sistema de seguimiento y localización de veh́ıculos basado en una red wireless de

sensores la cual se utiliza para guiar al conductor a encontrar parkings libres en zonas urbanas.

Cada sensor con coordenadas de referencia se localiza en cada plaza de parking. El desarrollo

del proyecto consiste en las siguientes partes:

1. Desarrollo teórico y validación: esta parte evalua las técnicas de posicionamiento y de

seguimiento de veh́ıculos mediante una interfaz gráfica para facilitar la simulación con

diferentes parámetros del sistema. El simulador simula diferentes rutas de un coche en una

región urbana como la del centro de Barcelona. Se ha llevado a cabo el posicionamiento del

veh́ıculo a tiempo real aśı como el seguimiento del mismo. El posicionamiento del veh́ıculo

se obtiene a partir de las RSSI de un nombre especificado de sensores de referéncia con una

técnica de posicionamiento similar a la de GPS. En cuanto al seguimiento del veh́ıculo, este

se realiza mediante algoritmos de seguimiento: en concreto un Filtro de Kalman que se usa

para seguir trayectorias que siguen un modelo uniforme, un Extended Kalman Filter que

sigue los giros del veh́ıculo, aśı como una combinación ponderada de los dos mediante un

novedoso algoritmo conocido como IMM (Interacting Multiple Model). Un análisis teórico

es realizado para validar estos algoritmos para diferentes escenarios.

2. Desarrollo experimental y validación: esta parte tiene por objetivo el desarrollo de un

navegador llamado ARID Navigator basado en el lenguage de programación Java. Este

navegador muestra la posición del conductor a tiempo real sobre un mapa de la zona. El

escenario de pruebas se encuentra en el parking de bomberos de la UAB y una campaña

de medidas se ha realizado por tal de ajustar ciertos parámetros del navegador. Estos

parámetros implican parámetros del Filtro de Kalman ya que este es utilizado para seguir

la trayectória del veh́ıculo en ĺınea recta. Además de la localización y seguimiento del

conductor, el navegador informa del número de aparcamientos libres de manera gráfica

sobre el mapa o auditiva. Para la localización, se ha usado un nuevo método más robusto

que el utilizado en la validación teórica cuando el error de posicionamiento es grande.

v

Dedicated to my dear nearest family including my 2 years nephew Damià. Also I want to

dedicate this work to my beautiful Mexican friend, Saydee as well as to my flat mates

Albert Arajol, Marta Alba, Roser Moreno who have allowed me to enjoy with them

during the work on this project. Also I dedicate this work to other friends: Marti

Manyosas, Paresh Saxena, Smrati Gupta, Laia Manyosas, Iván Aguilar, Ángel, Carlos

Cisneros, Joan Aguilar, Lúıs Mota, Marc, Śılvia Rodŕıguez, Eli Pulido, Alejandro and

Susana couple and of course to Sónia Cárdenas. Finally I dedicate this project to Rosa

(from Llampàies), Susana (my beautiful nurse friend) and Meritxell Pedraza, Ovi, Toni,

Simó and Kim who I will never forget them.

Acknowledgments

I appreciate first to my project guides: Jose López Vicario and Antoni Morell Pérez who gave me

much support to carry on this Master project. Also I thank to both Albert Bel who participated

in the practical section of my project and to Jose Antonio Del Peral who tolerated my presence

during at least long 6 months at the UAB’s Telecommunications Engineering lab.

Thanks to WorldSensing Company which has led the XALOC project.

ix

Contents

Abstract i

Resum iii

Resumen v

List of Figures xviii

List of Tables xix

Notation xxi

Acronyms xxiii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Document Organization . 3

2 State of Art 5

2.1 Introduction to Wireless Sensor Networks . 5

2.2 Introduction to Localization in WSN . 9

2.2.1 Localization Techniques . 10

2.2.2 Communication Technology . 22

2.2.3 Positioning strategy . 25

xi

xii Contents

2.3 Introduction to tracking techniques for mobile nodes 28

2.3.1 Kalman Filter . 29

2.3.2 Extended Kalman Filter (EKF . 31

2.4 Literature Review . 34

2.4.1 Cooperative Positioning in Wireless Sensor Networks 34

2.4.2 Tracking in Wireless Sensor Networks . 37

2.4.3 Applications using Wireless Sensor Networks 39

3 System Design 41

3.1 KF with the nearly constant velocity model . 41

3.2 EKF with the Nearly coordinated turn model . 43

3.3 Initialization of State Estimators . 45

3.4 The Interacting Multiple Model Estimator . 46

3.4.1 The algorithm . 48

3.4.2 Examples with the IMM Estimator . 50

4 Matlab Tracking Simulator 57

4.1 Introduction to the Matlab GUI Simulator . 58

4.1.1 Simulator block diagram . 61

4.1.2 Target Routes . 65

4.2 Tracking and Positioning Simulation . 65

4.3 Summary . 84

5 Experimental development 87

5.1 Scenario Description . 87

5.2 Measurement Campaign . 91

5.3 Implementation of the navigator . 97

5.4 Experimental Validation . 101

5.5 Summary . 103

Contents xiii

6 Conclusions and Future work 105

Appendices

A Scenario definition code 109

B Matlab GUI Code 123

C ARID Navigator Java Code 163

D XALOC news 193

D.1 Photos of the demonstration day . 193

D.2 Live demonstration news . 195

Bibliography

xiv Contents

List of Figures

1.1 Guiding panels. 2

2.1 A centralized WSN architecture [1]. 6

2.2 A distributed WSN architecture [2]. 6

2.3 Crossbow IRIS sensor node [3]. 7

2.4 Centralized WSN architecture. 8

2.5 Comparison between centralized and distributed architectures with respect to the

number of computational operations for an increasing of the unknown nodes [4]. 8

2.6 a) Non-cooperative localization: traditional trilateration is a special case in which

measurements are made only between an unknown sensor node and three location

aware nodes. b) Cooperative localization: the measurements made between any

pair of sensors can be used to aid in the location estimate of the unknown sensor[5]. 9

2.7 Cooperative localization is analogous to finding the location of (a) masses con-

nected by a network of (b) springs. First, reference nodes are nailed on a board to

their fixed coordinates. Springs with a length equal to the measured ranges can

be compressed or stretched. The equilibrium point of all the masses (c) indicated

by ⊗ represent the minimum-energy localization estimation [5]. 10

2.8 Range-free localization [2] . 12

2.9 Granularity of localization regions vs. Range overlap. a)2x2 Grid of reference

nodes. Fewer and Larger localization regions. b)3x3 Grid of reference nodes.

More and smaller localization regions.[6] . 12

2.10 DV-Hop correction example [7]. 14

2.11 ToA measurement using ultrasound and radio signals [8]. 17

2.12 TDoA measurement in celular networks [9]. 18

xv

xvi List of figures

2.13 Double-sided two-way ranging technique [10]. 19

2.14 AoA estimation methods.(a) AoA is estimated from the ToA differences among

antennas elements embedded in the sensor node. (b) AoA can also be estimated

from the RSS ratio RSS1�RSS2 between directional antennas[5]. 19

2.15 Trilateration using distance measurements. The circles represent the coverage

area of the sensor nodes [2]. 20

2.16 a)Zigbee networking topology, b)Zigbee operating frequency bands [11]. 24

2.17 a)Network with three anchor nodes and two unknown nodes, b)Ambiguity existing

in non-cooperative strategy when using only two anchor nodes, c) The ambiguity

disappear when cooperation between nodes 3 and 4 is allowed. As observed only

one of the green circumferences intersects with one of the blue circumferences in b). 26

2.18 Kalman filter operation [12] . 31

2.19 Extended Kalman Filter operation [13] . 35

3.1 The IMM estimator as the combination with two filters [14]. 46

3.2 Interacting Multiple Model operation [12]. 47

3.3 The IMM estimator with two filters [15]. 48

3.4 Comparison of KF, EKF and IMM-CT with σz = 1.5m. Configuration 1 51

3.5 Maneuvering mode probability for the EKF. Configuration 1 53

3.6 Configuration 1. Comparison of KF,EKF and IMM with higher measurements

standard deviation in 3.6(a)(b) Maneuvering mode probability for EKF in 3.6(b) 53

3.7 Configuration 2. (3.7(a)): Comparison of IMM-L with two single KF’s: one

σ2
u = 0.1m/s2 and another with σ2

u = 2m/s2, (3.7(b)): Maneuvering mode

probability for the model 2 . 55

4.1 ”Matlab GUI Design Application” based on Matlab© 58

4.2 ”Car Positioning Simulator” based on Matlab© 59

4.3 Block diagram of the ”Car Positioning Simulator”. 62

4.4 Target routes definition. 66

4.5 Simulation of tracking algorithms for different target routes and the default pa-

rameters. 68

List of figures xvii

4.6 Tracking simulation with Ngroups= 2 and Ta = 5 s. 69

4.7 Tracking simulation with σ2
shad = 0 dB. 70

4.8 Tracking simulation with σshad = 30 dB. 71

4.9 Tracking simulation with σ2
shad = 0 dB and σz = 0m. 73

4.10 Tracking simulation with σ2
shad = 2 dB and σz = 30m. 74

4.11 Tracking simulation with σ2
shad = 30 dB and σz = 30m. 75

4.12 Tracking simulation with σ2
shad = 30 dB, σz = 30m and the process covariance

matrices (4.4) . 78

4.13 Tracking simulation with σ2
shad = 30 dB, σz = 30m, QKF =[0.1 0;0 0.1] and

QEKF = 0 . 79

4.14 Tracking simulation with σ2
shad = 30 dB, σz = 30m, QKF =[0.1 0;0 0.1] and

QEKF =[0.8 0 0;0 0.8 0;0 0 0] . 80

4.15 Tracking simulation with the default parameters, Ngroups= 2 and the chosen

mode transition matrix in (4.5) . 81

4.16 EKF Mode probabilities comparison between the original and the one shown in

(4.6) . 82

4.17 Route 1. Comparison between equal and different values of γ̂RSSI and γRSSI . . 84

4.18 Route 3. Comparison between equal and different values of γ̂RSSI and γRSSI . . 84

5.1 Scenario Description. 88

5.2 Localization Strategy . 89

5.3 Scenario map. 89

5.4 5.4(a): Scenario Preparation, 5.4(b) and 5.4(d): online car marking, 5.4(d): Sen-

sor package . 90

5.5 Photo1: Parking sensor, Photo 2: a parking sensor placed below a parked car . . 90

5.6 Triangulation-based position measurements at low speed 92

5.7 Triangulation-based position measurements at high speed 92

5.8 Multilateration based positioning . 93

5.9 WAPM-based position measurements at low speed 94

5.10 WAPM-based position measurements at high speed 94

xviii List of figures

5.11 Weighted Average Power based positioning with 4 reference nodes as in 5.8 . . . 95

5.12 Navigator block diagram . 97

5.13 ARID Navigator based on Java on a tablet netbook. 99

5.14 ARID Navigator . 100

5.15 Scenario 1: One realization of the estimation of the car at several fixed locations 101

5.16 Scenario 2: Two realizations of the car moving at a constant speed of 10 Km/h . 102

5.17 Scenario 3: Two realizations of the car moving at a constant speed of 20 Km/h 102

D.1 Photos showing different production companies 194

D.2 D.2(a) shows the used car for the demonstration. D.2(b) shows all the used

equipment for the demonstration . 194

D.3 They are the BTVNoticies producers. 194

List of Tables

2.1 Centralized vs. distributed scheme comparison 8

3.1 RMSE errors of the different tracking estimators 52

3.2 RMSE errors of the different tracking estimators 54

3.3 RMSE errors of the different tracking estimators used in the Configuration 2 . . 55

4.1 RMSE errors associated to the results in figures 4.5(a), 4.5(b) and 4.5(c). 67

4.2 RMSE errors associated to the results in figures 4.6(a), 4.6(b) and 4.6(c). 68

4.3 RMSE errors associated to the results in figures 4.7(a), 4.7(b) and 4.7(c). 71

4.4 RMSE errors associated to the results in figures 4.8(a), 4.8(b) and 4.8(c). 72

4.5 RMSE errors associated to the results in figures 4.9(a), 4.9(b) and 4.9(c). 72

4.6 RMSE errors associated to the results in figures 4.10(a), 4.10(b) and 4.10(c). . . 73

4.7 RMSE errors associated to the results in figures 4.11(a), 4.11(b) and 4.11(c). . . 75

4.8 RMSE errors associated to the results in figures 4.12(a), 4.12(b) and 4.12(c). . . 77

4.9 RMSE errors associated to the results in figures 4.13(a), 4.13(b) and 4.13(c). . . 77

4.10 RMSE errors associated to the results in figures 4.14(a), 4.14(b) and 4.14(c). . . 78

4.11 RMSE errors associated to the results in figures 4.15(a), 4.15(b) and 4.15(c). . . 82

4.12 Comparison of the positioning between equal and different values of γRSSI and

γ̂RSSI for both Route 1 and Route 3. 85

5.1 ATZB-900-B0 Sensors. RF Characteristics [16]. 91

xx List of tables

Notation

In the sequel, matrices are indicated by uppercase boldface letters, vectors are indicated by

lowercase boldface letters, and scalars are indicated by italics letters. Other specific notation

has been introduced as follows:

∼ N (µs, σ
2
s) A certain random value distributed with a Gaussian probability density func-

tion with mean µs and variance σ2
s

N (x̄, P) A certain random vector x distributed with a Gaussian probability density

function with mean x̄ and covariance P

′ Transposition (of a matrix or a vector)

∼ Distributed as

argmin
x,y

Arguments (x, y) that minimizes the respective cost function

E[·] Expectation of ·

x State vector

x̂ Estimate of x

FKF,HKF State Kalman Filter Transition Matrix and Kalman Filter Measurement Ma-

trix

FEKF,HEKF Jacobian of the Extended Kalman Filter transition matrix and the Extended

Kalman Filter Observation Matrix

S Innovation covariance, Residual covariance, error covariance

Ω Turn rate in /sg applied in the coordinated turn model

σz, σu, σΩ Standards deviation of the position measurements, process acceleration noise

and turn rate

z Obtained measurements which are given to the KF, EKF or IMM filters

u[n] = Γv,w[n] State or process noise vector and Observation noise vector

xxi

xxii Notation

Q,R Process (state) noise covariance and Observation noise covariance

U Process acceleration noise covariance matrix

P (k|j) Conditional covariance matrix of state at time k given observations through

time j

T Sampling interval

∇x Gradient with respect to the vector x

πCT Mode transition probability matrix

Λ likelihood function

σ2
shad Shadowing noise power

γrssi Path loss exponent used to obtain values of RSSI from the received power

model

γd Path loss exponent used in the distance computation from the received power

model

Ta Sensor activation time in s

I Identity matrix

Acronyms

3G Third Generation

WSN Wireless Sensor Networks

GPS Global Positioning System

BS Base Station

IP Internet Protocol

GN Gathering Node

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

GSM Global System for Mobile

RSSI Received Signal Strength Indicator

RMSE Root Mean Square Error

DV Distance Vector

LOS Line Of Sight

NLOS Non Line Of Sight

ToF Time Of Flight

UWB Ultra-WideBand

WNLS Weighted Non Linear Least Squares

MDS Multilateration Scaling

MLE Maximum Likelihood Estimator

ISM Industrial,Scientific and Medical

MAC Medium Access Control

FSSS Frequency Hopping Spread Spectrum

DSSS Direct Sequence Spread Spectrum

xxiii

xxiv Acronyms

GFSK Gaussian Frequency Shift Keying

DQPSK Diferential Offset Phase shift Keying

LLE Local Linear Embedding

IM Iterative Multilateration

KF Kalman Filter

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

IMM Interacting Multiple Model

WGN White Gaussian Noise

AR Auto Regressive

WSS Wight Sense Stationary

MMSE Minimum Mean Square Estimator

LMMSE Linear Minimum Mean Square Estimator

CT-Model Coordinated Turn Model

ATC Air Traffic Control

VTC Vehicle Traffic Control

GUI Graphical User Interface

IDE Integrated Development Environment

UTM Universal Traverse Mercator

s.t.d standard deviation

WAPM Weighted Average Power Method

Chapter 1

Introduction

1.1 Motivation

The actual tendency of wireless communications focuses on the design and construction of small

sensors that are able to sense and communicate with each other via wireless. This is a very

hot topic of research since hundreds of small sensors can be exploited in a large field to obtain

remotely real time information as well as monitoring. Generally a sensor has the capacity to

sense one or several physical magnitudes (i.e. temperature, pressure, force, magnetism). As a

sensor is aware of the physical magnitude several sensors forming a sensor network can be useful

in several fields. For example some applications of WSN (Wireless Sensor Networks) can be

useful in the following fields:

1. In geology: the monitoring of tectonic plates,the prediction of either a volcanic eruption

or an avalanche.

2. In medicine: the monitoring of patient’s heartbeat or the localization of a patient in a

large hospital

3. In logistics: the tracking and monitoring of the transport packages.

Another application where the WSN can be useful is the localization of free parking slots in

urban areas. Currently in a big town it is quite difficult for the users to find available outdoor

parking places because there is not information to guide the user to find an available parking slot.

The consequence of this fact is the high amount of CO2 pollution launched to the atmosphere

and therefore contributing to an increase of the global world contamination. The idea to built

an efficient car parking management system leads the following advantages:

1. Less time for the users to find an available parking lot.

1

2 Chapter 1. Introduction

2/9

XALOC Scenario

Figure 1.1: Guiding panels.

2. Reduction of the fuel consumption and a decrease of the CO2 pollution.

3. Automatic management in non-free car parking (user must pay). In this application the

price associated to the parking time of each car can be automatically computed from a

central site.

4. An efficient car parking management system can provide a reduction of the traffic in a

certain area as the traffic is distributed and it avoids bottlenecks.

5. As the technology used in these applications is a Wireless Sensor Network, positioning of

the parked cars and also real-time positioning or tracking of users that are looking for free

parking places can be carried on to drive the user to those known coordinates stored in the

central site. Therefore geographical routing known as navigation in GPS can be exploited

in real-time.

The motivation of this work is to get into the interesting world of WSN with a new application

useful in outdoor car management systems that uses a WSN to track and to guide the driver to

find a free parking slot. This application allows a user to find a free parking spots in a certain

urban area through a set of indications shown in panels on the street. In order to guide the

driver its real time position is needed. This application uses some positioning strategies which

are introduced briefly in chapter 2.

As an example, figure 1.1 shows a way to guide the users and the information of available

parking slots in each direction. It is useful for the users to find free parking slots if information

is provided to the driver.

1.2. Objectives 3

1.2 Objectives

The objectives of this Master thesis are majority covered by the objectives of the XALOC

project which is an e-infrastructure project in the framework of the INFOREGIO program,

funded by the Autonomous Government of Catalonia. The mission of this project which is led

by the company WorldSensing is to develop a platform based on a WSN capable of detecting

outdoor free parking spaces and locating vehicles that carry an on board sensor. The localization

information as well as tracking makes possible to guide the drivers to free parking spaces in the

area of interest by means of panels on the road or notifications to mobile terminals. The goal

of XALOC project is to reduce pollutant emissions thus contributing to a more sustainable

development of cities. The work for the Master project has two parts: theoretical and practical:

• The theoretical part consists on the study and analysis of tracking algorithms with Matlab

simulations that have been carried on with a developed graphical user interface.

• The practical part consists of a development of a navigator based in Java. Several outdoor

measurements are performed to adjust certain parameters in order to track the car that

moves along a road surrounded by sensors. The tracking of the car is done with a simple

tracking algorithm.

Below the objectives of this work are summarized:

1. Introduction to the Wireless Sensor Networks.

2. Introduction to the current positioning techniques for WSN.

3. Introduction to tracking algorithms.

4. Implementation of tracking algorithms for the target tracking.

5. Simulations and discussions for different system parameters.

6. Implementation of an experimental test-bed consisting of a WSN deployed along a road and

a car that is moving through the road. Furthermore, a Java-based navigator is developed

in order to show the measured real time position of the driver over a map by means of

a positioning strategy based on RSSI (Received Signal Strength Indicator) and a tracking

algorithm.

1.3 Document Organization

This Master thesis is organized as follows:

4 Chapter 1. Introduction

1. Chapter 2 is a state of the art in the field of positioning techniques and tracking algorithms

for WSN.

2. Chapter 3 contains the implementation of the set of algorithms with their corresponding

models.

3. Chapter 4 deals with several simulations to analyse the performance of the tracking algo-

rithms for different cases. To make easier the management of the software a GUI (Graphical

User Interface) is implemented in Matlab.

4. Chapter 5 introduces the design of an implemented Java-based navigator. From the re-

ceived power of a number of specified sensors the navigator computes the real-time co-

ordinates and draws these over map of the measurement geographical area. In addition

to the vehicle localization, the navigator gives information about the free and non free

parking places which are obtained from an external database server. Several outdoor mea-

surements are carried on to find the optimal system parameters that allows to obtain an

accurate and valid navigator for the measured scenario.

5. Chapter 6 gives the conclusions of all the carried work as well as the future work with the

intention to follow.

Chapter 2

State of Art

The purpose of this chapter is to give to the reader, a brief introduction about the amazing

world of WSN. These networks can be large with hundreds or even thousands of event-driven

sensors that are placed in remotely regions. Therefore it is needed to localize those sensor nodes

automatically activated by a certain detected event. Hence it means that the coordinates of

that sensor must be discovered. An application example can be the detection and tracking of a

target that enters the sensing range and moves through the sensor field. This chapter is devoted

to provide the reader some of the current localization techniques and tracking algorithms.

2.1 Introduction to Wireless Sensor Networks

Nowadays WSN have become a hot topic for many research entities focused in many real-time

applications such as detection, mobile sensors tracking, localization of events, etc. A WSN is

a kind of Ad-Hoc network with a set of autonomous nodes which are energy-constrained and

interconnected through wireless links. Many research studies are carried on to discover energy-

efficient algorithms that might run in a WSN [17], [18], [19] since sensor nodes are able to carry

some processing. This philosophy is seen in distributed WSN where the processing is shared

among several sensor nodes. Thus it avoids the need of having a single processing unit usually

known as FC (Fusion Center). Figure 2.1 shows an example of a centralized WSN with the

sink acting as a FC and the sensor nodes reaching the FC through multihop. Figure 2.2 shows

another example of a distributed WSN. In this figure several clouds known as nodes clusters can

be seen. In each cluster a cluster head (or leader node) is chosen to carry some processing. The

results computed by each cluster head are sent to the application node through the gateway

node connected to an IP(Internet Protocol)-network.

The architecture of a WSN can be described by following elements [2] [20]:

5

6 Chapter 2. State Of Art

Figure 2.1: A centralized WSN architecture [1].

TSI Status : Draft Page 13

This document is produced under the EC contract 211998.
It is the property of the AWISSENET consortium and shall not be distributed or reproduced without the formal approval of the AWISSENET Steering

Committee

Figure 1. Layers of AWISSENET architecture

The proposed architecture perceives a sensor node as a set of functional requirements, which
can be mapped into application-specific components. A generic architecture scheme is
presented in Figure 1. This Figure presents a generic architecture, covering components of
the nodes from Layer 4 to Layer 1. In the next sections of this deliverable, each one of the
different Layer nodes (along with their relevant interfaces) will be presented in details.
The reference architecture consists of both horizontal and vertical functional layers. Following

a bottom-up approach, the Physical Layer specifies the node’s physical capabilities to
perform wireless communication. This component is responsible for receiving/sending packets

from the LLC/MAC Layer and transmitting them over the air. Additionally, this component

interacts with the Energy Manager component in order to increase/decrease transmission
power accordingly. Finally, during the implementation phase and taking into account the

different capabilities of the nodes, we will investigate the possibility of the Physical Layer
component to provide ranging capabilities in the form of received signal strength indications
(RSSI).

The Energy Manager component, as described above, is responsible for the transmission
power of the sensor. Under specific circumstances and depending on the RSSI indication (if
applicable), the node can decrease its transmission power and thus save energy.

The LLC/MAC Layer component is responsible for medium access control functionality and
communication among nodes within communication range, where most of the commercial
sensors use either IEEE 802.11 or IEEE 802.15.4 specifications. This component also

communicates with the upper layer component (Network Layer) to exchange routing
information.

Additionally, in AWISSENET, an interface to the H/W Accelerator component is foreseen,
enabling the exploitation of its capabilities for the execution of a set of time- and energy-
consuming security computations (such as encryption/decryption, authentication verification),
performed in this hardware component. Thus, encryption, as well as other computation burden
(such as trust value computations), can be realized into hardware modules (FPGA, CPLD),
and connected to the Layer 3 and 2 sensor nodes.

Figure 2.2: A distributed WSN architecture [2].

• Sink nodes are ad-hoc IP nodes with enough computational skills and enough energy to

allow a wired/wireless communication interface to other TCP(Transport Control Proto-

col)/IP data networks.

• Sensor nodes as the shown in figure 2.3 consist by a set of sensing, processing, communi-

cation, actuation, and power units integrated on a single or multiple boards and packaged

in a few cubic inches. These nodes are energy constrained because they are powered by

small batteries such as AA,AAA or watch batteries. However they provide few kilobytes

of memory and a low speed processor unit. These kind of nodes can be classified in two

categories depending on its function:

– Sensors that provide reliable positioning information by the use of a GPS (Global

Positioning system) or already known their coordinates. In the literature these sensors

are referred as anchor nodes, beacon nodes, known nodes or reference nodes. If these

2.1. Introduction to Wireless Sensor Networks 7

sensors have a GPS receiver then they must be powered by more powerful batteries

due to the fact that a GPS receiver requires a lot of energy consumption for the

processing. In the example of figure 2.2 these sensors appear at Layer 2.

– Sensors that do not have reliable geographic location information and they are not

equipped with a GPS receiver or a similar positioning device. Due to that precise

geographic coordinates are not available, these nodes must be able to estimate their

relative position by the use of some appropriate localization technique. In the litera-

ture these sensors are called unknown sensors, blind sensors or just sensor nodes. In

the example of figure 2.2 these sensors appear at Layer 3.

P h o n e : 4 0 8 . 9 6 5 . 3 3 0 0 F a x : 4 0 8 . 3 2 4 . 4 8 4 0 E - m a i l : i n f o @ x b o w . c o m W e b : w w w . x b o w . c o m

WIRELESS MEASUREMENT SYSTEM

IRIS

•	 2.4 GHz IEEE 802.15.4, Tiny	
Wireless Measurement System

•	 Designed Specifically for Deeply
Embedded Sensor Networks

•	 250 kbps, High Data Rate Radio

•	 Wireless Communications with
Every Node as Router Capability

•	 Expansion Connector for Light,
Temperature, RH, Barometric 	
Pressure, Acceleration/Seismic,
Acoustic, Magnetic and other
Crossbow Sensor Boards

Applications
•	 Indoor Building Monitoring and

Security

•	 Acoustic, Video, Vibration and
Other High Speed Sensor Data

•	 Large Scale Sensor Networks
(1000+ Points)

XM2110CA Block Diagram

Document Part Number: 6020-0124-01 Rev A

The IRIS is a 2.4 GHz Mote module
used for enabling low-power, wireless
sensor networks. The IRIS Mote
features several new capabilities that
enhance the overall functionality of
Crossbow’s wireless sensor networking
products.

Product features include:

•	 Up to three times improved radio
range and twice the program
memory over previous MICA Motes

•	 Outdoor line-of-sight tests have
yeilded ranges as far as 500
meters between nodes without
amplification

•	 IEEE 802.15.4 compliant RF
transceiver

•	 2.4 to 2.48 GHz, a globally
compatible ISM band

•	 Direct sequence spread spectrum
radio which is resistant to RF
interference and provides inherent
data security

•	 250 kbps data rate
•	 Supported by MoteWorks™ wireless 	

sensor network platform for reliable,
ad-hoc mesh networking

•	 Plug and play with Crossbow’s
sensor boards, data acquisition
boards, gateways, and software

MoteWorks™ enables the development
of custom sensor applications and is
specifically optimized for low-power,

battery-operated networks. MoteWorks
is based on the open-source TinyOS
operating system and provides reliable,
ad-hoc mesh networking, over-the-
air-programming capabilities, cross
development tools, server middleware
for enterprise network integration and
client user interface for analysis and
configuration.

Processor & Radio
Platform 	
The XM2110CA is based on the Atmel
ATmega1281. The ATmega1281 is a
low-power microcontroller which runs
MoteWorks from its internal flash
memory. A single processor board	
(XM2110) can be configured to run
your sensor application/processing and
the network/radio communications
stack simultaneously. The IRIS 51-pin
expansion connector supports Analog
Inputs, Digital I/O, I2C, SPI and UART
interfaces. These interfaces make it
easy to connect to a wide variety of
external peripherals.

Sensor Boards	
Crossbow offers a variety of sensor
and data acquisition boards for the
IRIS Mote. All of these boards connect
to the IRIS via the standard 51-pin
expansion connector. Custom sensor
and data acquisition boards are also
available. Please contact Crossbow for
additional information.

IRIS

RoHS
COMPLIANT

Figure 2.3: Crossbow IRIS sensor node [3].

• Base nodes which are responsible to gather information from other sensors and to send

it to a central processing unit for the processing tasks. The gathered data can be stored

either in a local or an external database. These kinds of nodes are needed in a centralized

architecture as the shown in figure 2.4.

The drawback of a centralized approach is the communication bottleneck at and near the

central processor [5]. A mitigation of this issue is the use of a distributed or decentralized

scheme where the processing tasks are not only performed at the BS node but the processing

is shared to other nodes. In the distributed approach the whole sensor network is divided into

sets of sensors. Each set forming a cluster contains a cluster head or leader node which is able

to perform processing tasks for its cluster in addition to the processing tasks performed at the

FC [21].

On the other hand, as each sensor node has a processing unit it can be able to perform some small

processing. If all the sensor nodes of the network participate in the processing a cluster-based

architecture may not be needed. However most of the found literature consider the cluster-

approach a good choice [22] [14] [23], specially for distributed target tracking. A comparative

8 Chapter 2. State Of Art

11/02/2010 demirbas_fig01.jpg (368×344)

…buffalo.edu/…/demirbas_fig01.jpg 1/1

Figure 2.4: Centralized WSN architecture.

between centralized and distributed architectures is found in table 2.1. Also a comparison is

shown in figure 2.5 in terms of computation operations.

Scheme Base Node Failure Risk Cost Energy efficient Convergence

Centralized Needed High High Low Slow

Distributed Unneeded Low Low High fast

Table 2.1: Centralized vs. distributed scheme comparison

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

10 20 30 40 50 60 70 80 90 100

No. of Unknown Nodes

M
Fl

op
s

Distributed Centralized

Figure 2.5: Comparison between centralized and distributed architectures with respect to the

number of computational operations for an increasing of the unknown nodes [4].

2.2. Introduction to Localization in WSN 9

As a distributed WSN allows the nodes to exchange data when required, it is common to use

this architecture in collaborative or cooperative WSN. The main advantage of cooperative WSN

is the cooperation between sensor nodes to carry a distributed localization algorithm. Section

2.2.1.2 gives an introduction to localization in WSN.

maintenance will direct equipment servicing exactly when and
where it is needed based on data from wireless sensors; traffic
monitoring systems will better control stoplights and inform
motorists of alternate routes in the case of traffic jams; and envi-
ronmental monitoring networks will sense air, water, and soil
quality and identify the source of pollutants in real time.

Automatic localization of the sensors in these wireless net-
works is a key enabling technology. The overwhelming reason is
that a sensor’s location must be known for its data to be mean-
ingful. As an additional motivation, sensor location information
(if it is accurate enough) can be extremely useful for scalable,
“geographic” routing algorithms. Note also that location itself is
often the data that needs to be sensed; localization can be the
driving force for wireless sensor networks in applications such
as warehousing and manufacturing logistics.

To make these applications viable with possibly vast numbers
of sensors, device costs will need to be low (from a few dollars to
a few cents depending on the application), sensors will need to
last for years or even decades without battery replacement, and
the network will need to organize without significant human
moderation. Traditional localization techniques are not well
suited for these requirements. Including a global positioning
system (GPS) receiver on each device is cost and energy prohibi-
tive for many applications, not sufficiently robust to jamming
for military applications, and limited to outdoor applications.
Local positioning systems (LPS) [6] rely on high-capability base
stations being deployed in each coverage area, an expensive bur-
den for most low-configuration wireless sensor networks.

Instead, we consider the problem in which some small
number m of sensors, called reference nodes, obtain their

coordinates (either via GPS or from a system administrator
during startup) and the rest, n unknown-location nodes, must
determine their own coordinates. If sensors were capable of
high-power transmission, they would be able to make meas-
urements to multiple reference nodes. Positioning techniques
presented in other articles in this special issue, for cellular
mobile station (MS) location or location in wireless local area
networks (WLANs), could be applied. However, low-capability,
energy-conserving devices will not include a power amplifier,
will lack the energy necessary for long-range communication,
and may be limited by regulatory constraints on transmit
power. Instead, wireless sensor networks, and thus localization
techniques, will be multihop (a.k.a. “cooperative” localization),
as shown in Figure 1. Rather than solving for each sensor’s
position one at a time, a location solver (analogous to the sys-
tem of masses connected by springs shown in Figure 2) will
estimate all sensor positions simultaneously.

Such localization systems are an extension of techniques used
in or proposed for WLAN and cellular MS location, as described
elsewhere in this issue. We still allow unknown-location devices
to make measurements with known-location references, but in
cooperative localization, we additionally allow unknown-location
devices to make measurements with other unknown-location
devices. The additional information gained from these measure-
ments between pairs of unknown-location devices enhances the
accuracy and robustness of the localization system. In the con-
siderable literature, such systems have alternatively been
described as “cooperative,” “relative,” “distributed,” “GPS-free,”
“multihop,” or “network” localization; “self-localization;” “ad-
hoc” or “sensor” positioning; or “network calibration.” In this

IEEE SIGNAL PROCESSING MAGAZINE [55] JULY 2005

[FIG1] (a) Traditional multilateration or multiangulation is a special case in which measurements are made only between an unknown-
location sensor and known-location sensors. In (b) cooperative localization, measurements made between any pairs of sensors can be
used to aid in the location estimate.

Data
Link

1

2

4

5

6

8

9

A
B

C

7

3

1Data
Link

1

2

4

5

6

8

9

A
B

C

7

3

1

Unknown Location

Wireless Sensors

Known Location

(a) (b)

Central
Computer

Central
Computer

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 11, 2010 at 13:28 from IEEE Xplore. Restrictions apply.

Figure 2.6: a) Non-cooperative localization: traditional trilateration is a special case in which

measurements are made only between an unknown sensor node and three location aware nodes.

b) Cooperative localization: the measurements made between any pair of sensors can be used

to aid in the location estimate of the unknown sensor[5].

2.2 Introduction to Localization in WSN

Localization of a node in a network appear actually in different environments using wireless

technologies such as WLAN (Wireless Local Area Network), WPAN (Wireless Personal Area

Network), GSM (Global System for Mobile) and more recently WSN. The localization of a node

can be done by means of the following choices:

• Cooperative localization allows the cooperation between unknown sensor nodes to obtain

their positions. For that every unknown sensor must be within the coverage range of

their neighbours. Cooperative localization techniques are useful in scenarios where GPS

can not be used for several reasons. Some of these reasons can be for instance the high

deployment cost or the low coverage from the reference nodes in severe environments such

as urban areas or tunnels. The problem of cooperative localization generally is a 2-D (two-

dimensional) problem as the shown in both figures 2.7 and 2.6. This problem consists to

find the following 2n unknown-location node coordinates [5]:

θθθx = [x1, . . . , xn], θθθy = [y1, . . . , yn] (2.1)

10 Chapter 2. State Of Art

given the known reference coordinates [xn+1, . . . , xn+m, yn+1, . . . , yn+m], and pair-wise

measurements (Xi,j) between the nodes i and j that can be any physical reading (such as

ToA(Time of Arrival), AoA(Angle Of Arrival) or RSSI) which indicates a distance or a

relative position.

article, we use “cooperative” localization [7] to emphasize the
communication and measurements between many pairs of sen-
sors required to achieve localization for all sensors.

MOTIVATING APPLICATION
EXAMPLE: ANIMAL TRACKING
If cooperative localization can be implemented as described above,
many compelling new applications can be enabled. For the pur-
poses of biological research, it is very useful to track animals over
time and over very wide ranges [8]. Such tracking can answer
questions about animal behavior and interactions within their
own species as well as with other species. Using current practices,
tracking is a very difficult, expensive process that requires bulky
tags that rapidly run out of energy. A typical practice is to attach
VHF transmitter collars to the animals to be tracked and then tri-
angulate their location by driving (or flying) to various locations
with a directional antenna. Alternatively, GPS-based collars can be
used, but these are limited by cost concerns and offer only a short
lifetime due to high energy consumption. Using wireless sensor
networks can dramatically improve the abilities of biological
researchers (as demonstrated by “ZebraNet” [8]). Using multihop
routing of location data through the sensor network enables low
transmit powers from the animal tags. Furthermore, interanimal
distances, which are of particular interest to animal behaviorists,
can be estimated using pair-wise measurements and cooperative

localization methods without resorting to GPS. The end result of
the longer battery lifetimes is less frequent recollaring of the ani-
mals being studied.

MOTIVATING APPLICATION EXAMPLE: LOGISTICS
As another example, consider deploying a sensor network in an
office building, manufacturing floor, and warehouse. Sensors
already play a very important role in manufacturing. The moni-
toring and control of machinery has traditionally been wired, but
making these sensors wireless reduces the high cost of cabling
and makes the manufacturing floor more dynamic. Automatic
localization of these sensors further increases automation.

Also, boxes and parts to be warehoused as well as factory and
office equipment are all tagged with sensors when first brought
into the facility. These sensors monitor storage conditions (tem-
perature and humidity) and help control the heating, ventila-
tion, and air conditioning (HVAC) system. Sensors on mobile
equipment report their location when the equipment is lost or
needs to be found (e.g., during inventory), and even contact
security if the equipment is about to “walk out” of the building.
Knowing where parts and equipment are when they are critically
required reduces the need to have duplicates as backup, savings
which could pay for the wireless sensor network itself.

Radio-frequency identification (RFID) tags, such as those
now required by Walmart on pallets and cartons entering its

warehouses [9], represent a first step in warehouse
logistics. RFID tags are only located when they
pass within a few feet of a reader, thus remaining
out of access most of their time in the warehouse.
Networked wireless sensors, however, can be
queried and located as long as they are within
range (on the order of 10 m) of the closest other
wireless sensor.

The accuracy of cooperative localization
increases with the density of sensors, as we show
later in a numerical example. Thus, having hetero-
geneous sensors of varied purposes, all participat-
ing in the same network helps drive localization
errors down.

COOPERATION REQUIREMENT:
STANDARDIZATION
One way to ensure that heterogeneous sensors can
“cooperate” to improve localization performance is
to pursue standardization of wireless sensor net-
works. Two major sensor network standards are
the IEEE 802.15.4 physical (PHY) layer and medi-
um access control (MAC) layer standard for low-
rate wireless personal area networks (LR-WPANs)
and the ZigBee networking and application layer
standard [10]. These standards enable localization
information to be measured between pairs of sen-
sors. In particular, RSS can be measured in the
802.15.4 PHY standard via the link quality indica-
tion (LQI), which reports the signal strength

IEEE SIGNAL PROCESSING MAGAZINE [56] JULY 2005

[FIG2] Cooperative localization is analogous to finding the resting point of (a)
masses (spools of thread) connected by a network of (b) springs. First, reference
nodes are nailed to their known coordinates on a board. Springs have a natural
length equal to measured ranges and can be compressed or stretched. They are
connected to the pair of masses whose measured range they represent. After
letting go, the (c) equilibrium point of the masses represent a minimum-energy
localization estimate; the actual node locations are indicated by ⊗.

(a) (b)

(c)

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 11, 2010 at 13:28 from IEEE Xplore. Restrictions apply.

Figure 2.7: Cooperative localization is analogous to finding the location of (a) masses connected

by a network of (b) springs. First, reference nodes are nailed on a board to their fixed coordinates.

Springs with a length equal to the measured ranges can be compressed or stretched. The

equilibrium point of all the masses (c) indicated by ⊗ represent the minimum-energy localization

estimation [5].

• Non-cooperative whenever the unknown sensors only communicates directly to at least

three reference nodes with known coordinates. For example, GPS use non-cooperative

localization since a GPS receiver computes its coordinates with three satellites.

Localization can be performed by means of of the following requirements:

• Localization techniques

• Communication Technology

• Position Strategy

2.2.1 Localization Techniques

Many existing localization algorithms attempt to solve the problem of determining a node’s

location within a region. These algorithms are based on a localization technique. Different

localization techniques differ in the way how this location is obtained. The choice of a localization

2.2. Introduction to Localization in WSN 11

technique depends on certain factors such as the network characteristics, device restrictions due

to its hardware complexity, nature of the environment (indoor/outdoor), communication costs,

error requirements and device mobility. These localization techniques are classified as:

• range-free schemes estimate the unknown node positions without direct distance infor-

mation [24].

• range-based schemes estimate metrics in the received signal coming from the neighbours

in order obtains the relative distances.

This section discusses both range-free and range-based solutions [25] [5] [2].

2.2.1.1 Range-free localization techniques

This technique assumes that an unknown node cannot obtain distances by direct measurements

but it suppose that exists some physical parameter related somehow with a distance (this re-

lationship may be obscure or unknown) such as the typical RSSI parameter. This kind of

technique does not estimate directly the node position from the RSSI values but it uses a dif-

ferent approach. The idea is the following: each anchor node knows the RSSI (related to the

distance) from the other anchor nodes and broadcasts them to the network. The set of RSSI

values determine a set of concentric coverage circles centred at each anchor node with radius

the distance corresponding to the set of RSSI values. The number of coverage circles is the

same as the number of anchor nodes. Then the unknown node compares the RSSI from every

anchor node with the known RSSI between all the other anchor nodes. This comparison results

in a bounded region covered between those anchors with nearest RSSI from that anchor node

which RSSI is compared. For every anchor a bounded region is obtained and the intersection of

all these regions gives an area where the unknown node is located [2] [6]. It may be better to

explain this with an example. Consider a network composed by three anchor nodes ANi=1,2,3

and the unknown node called UN. It is assumed that the ith anchor node broadcasts its coordi-

nates (Xi, Yi) periodically as well as the RSSI values of the received signals from other anchor

nodes. Furthermore, for every anchor node ANi there are three concentric coverage circles with

radius the distance obtained with the RSSI from the other anchor nodes ANj j 6=i. The notation

RSSI(A,B) used following is the received power value by node B for a signal transmitted by

node A. Therefore, lower the distance between nodes A and B higher the RSSI value as it is

inversely proportional to distance. Each of the regions is determined as follows:

• First the UN compares its RSSI from the anchor AN1 with the RSSI from the other

anchor nodes of the network. If the hypothesis RSSI(AN1, AN2) > RSSI(AN1, UN) >>

RSSI(AN1, AN3) is true then it implies that the unknown node is located in the red ring

(a bounded region between the anchors AN2 and AN3).

12 Chapter 2. State Of Art

• Following the UN compares its RSSI from the anchor AN2 with the RSSI from the other

anchor nodes of the network. If this comparison RSSI(AN2, AN1) > RSSI(AN2, UN) >>

RSSI(AN2, AN3) is true it means that the UN lies in the green ring which is another

bounded region between the anchors.

• The resolve the ambiguity of the two possible regions a third anchor node AN3 is needed.

Then the UN compares its RSSI from the anchor AN3 with the RSSI from one of the other

anchors. If RSSI(AN3, UN > RSSI(AN3, AN1) is true it implies that the unknown node

is found in the lower intersection marked in brown.

TSI Status : Draft Page 22

This document is produced under the EC contract 211998.
It is the property of the AWISSENET consortium and shall not be distributed or reproduced without the formal approval of the AWISSENET Steering

Committee

AN1

AN2

AN3

UN

Figure 4. Range-free localization

For instance, Figure 4 illustrates an example of how a bounding region for the position of an UN
can be obtained using intersections of rings. We will assume that every AN periodically transmits a
beacon signal, and also that ANs broadcast the RSSI values they get for every beacon signal they
receive from any other AN. In the sequel, we will denote as RSSI(A,B) the value of RSSI
measured by node B for a signal transmitted from node A: notice that the RSSI gets higher as the
distance between A and B gets lower (i.e. it is a measurement inversely related to distance). The
bounding intersection in Figure 4 is determined by the UN sequentially, assuming the following
hypotheses:

1. RSSI(AN1,AN2) > RSSI(AN1,UN) > RSSI(AN1,AN3). This implies that the UN lies in the red
ring.

2. RSSI(AN2,AN1) > RSSI(AN2,UN) > RSSI(AN2,AN3). This implies that the UN also lies in the
green ring.

3. RSSI(AN3,UN) > RSSI(AN3,AN1). This implies that the UN also lies in the blue circle
(resolves the ambiguity of the two possible intersections of rings).

We can see how every AN contributes to make the UN position bounds tighter. However, it must
be emphasized that reasonably accurate positioning can only be achieved in highly dense
networks.

Figure 2.8: Range-free localization [2] 4

B. Idealized Radio Model

We have found an idealized radio model useful for predict-
ing bounds on the quality of connectivity based localization.
We chose this model because it was simple and easy to rea-
son about mathematically. This section presents this ideal-
ized model. To our surprise, this model compares quite well
to outdoor radio propagation in uncluttered environments as
we explore in the next section.

We make two assumptions in our idealized model:
� Perfect spherical radio propagation.
� Identical transmission range (power) for all radios.

C. Localization Algorithm

Multiple nodes in the network with overlapping regions of
coverage serve as reference points (labelledR1 toRn). They
are situated at known positions, (X1; Y1) to (Xn; Yn), that
form a regular mesh and transmit periodic beacon signals (pe-
riod = T) containing their respective positions. We assume
that neighboring reference points can be synchronized so that
their beacon signal transmissions do not overlap in time. Fur-
thermore, in any time interval T , each of the reference points
would have transmitted exactly one beacon signal.

First, we define a few terms.

d Separation distance between adjacent reference points
R Transmission range of the reference point
T Time interval between two successive beacon signals
transmitted by a reference point
t Receiver sampling or data collection time
Nsent(i; t) Number of beacons that have been sent byRi in
time t
Nrecv(i; t) Number of beacons sent by Ri that have been
received in time t
CMi Connectivity metric for Ri

S Sample size for connectivity metric for reference pointRi

CMthresh Threshold for CM
(Xest; Yest) Estimated Location of the receiver
(Xa; Ya) Actual Location of the receiver

Each mobile node listens for a fixed time period t and col-
lects all the beacon signals that it receives from various ref-
erence points. We characterize the information per reference
point Ri by a connectivity metric (CMi), defined as

CMi =
Nrecv(i; t)

Nsent(i; t)
� 100

In order to improve the reliability of our connectivity met-
ric in the presence of various radio propagation vagaries, we
would like to base our metric on a sample of at least S pack-
ets, where S is the sample size, a tunable parameter of our
method (i.e., Nsent(i; t) = S). Since we know T to be the
time period between two successive beacon signal transmis-
sions, we can set t, the receiver’s sampling time as:

t = (S + 1� �)T (0 < �� 1)

2 * 2 GRID OF REFERENCE POINTS
FEWER AND LARGER LOCALIZATION REGIONS

3 * 3 GRID OF REERENCE POINTS
MORE AND SMALLER LOCALIZATION REGIONS

THE SHADED AREA REFLECTS ONE LOCALIZATION REGION

Fig. 1. Granularity of Localization Regions vs. Range Overlap

From the beacon signals that it receives, the receiver node
infers proximity to a collection of reference points for which
the respective connectivity metrics exceed a certain thresh-
old,CMthresh (say 90%). We denote the collection of ref-
erence points byRi1; Ri2; : : : ; Rik. The receiver localizes it-
self to the region which coincides to the intersection of the
connectivity regions of this set of reference points, which is
defined by the centroid of these reference points.

(Xest; Yest) = (
Xi1

+ � � �+Xik

k
;
Yi1

+ � � �+ Yik

k
)

We characterize the accuracy of the estimate by the local-
ization error LE defined as,

LE =
q
(Xest �Xa)

2 + (Yest � Ya)
2

By increasing the range overlap of the reference points
that populate the grid i.e., increasing the ratio R

d
, the gran-

ularity of the localization regions becomes finer, and hence
the accuracy of the location estimate improves. This is illus-
trated in figure 1.

IV. VALIDATION

Since our localization model depends on the spherical ra-
dio propagation assumption, described in the previous sec-
tion; we checked the validity of our assumption in both out-
door and indoor environments.

In outdoorenvironments, we evaluated the effectiveness of
our idealized radio model by comparing its accuracy to exper-
imental measurements. We evaluated propagation between
two Radiometrix radio packet controllers (model RPC-418)
operating at 418 MHz. A node periodically sent 27 byte bea-
con signals; we define a 90% packet reception rate as con-
nected and empirically measured an 8.94m spherical range
for our simple model.

To evaluate how well our simple model compares to a real-
world scenario, we placed a radio in the corner of an empty
parking lot (i.e., at the origin (0; 0)) and then measured con-
nectivity at 1m intervals over a 10m square quadrant.

Figure 2 compares these measurements with connectivity
as predicted by the model. Among the 78 points measured,

Figure 2.9: Granularity of localization regions vs. Range overlap. a)2x2 Grid of reference

nodes. Fewer and Larger localization regions. b)3x3 Grid of reference nodes. More and smaller

localization regions.[6]

Every anchor ANi contributes to make the UN position bounds tighter, due to the intersec-

tion of the set of bounds for every anchor. On the other hand increasing the number of reference

2.2. Introduction to Localization in WSN 13

nodes, the range overlap of them also increase meaning more bounded regions. Therefore the

granularity of the localization regions becomes smaller, and hence the accuracy of the localiza-

tion estimate improves. This explanation can be seen in figure 2.9 [6]. The UN localizes itself

to the connectivity region of this set of K reference points, which is defined by the centroid of

these reference points [6].

(Xest, Yest) =

(
Xi1 + . . .+Xik

k
,
Yi1 + . . .+ Yik

k

)
(2.2)

A metric used to know the accuracy of this estimate is the localization error LE(Least

Squares) or RMSE(Root Mean Square Error):

LE =

√
(Xest −Xa)

2 + (Yest − Ya)2 (2.3)

Therefore as more anchor nodes are within the range of the unknown sensor, greater accuracy

in the positioning because more bounding regions will be obtained and hence the final intersecting

area will be smaller. This approach is known as Centroid scheme [6].

Another range-free localization technique is the DV-Hop (Distance-Vector-Hop)[7][25]. The

main idea of this technique differs in the way that the distances from the unknown nodes to

the reference nodes is obtained. This technique uses a similar approach to the classical distance

vector routing algorithms so that all nodes (both unknown and reference nodes) in the network

find the minimum number of hops as well as the direction (related to the shortest path) to

reach a reference node . In other words a routing metric (hop count) is used to measure the

distance (in hops) between a source node and a destination node. Each hop in a path from

source to destination is assigned a hop count value, which is typically 1. The number of hops

is incremented by one if a certain node receives a packet with another destination. Every node

in the network needs to know the 2-D coordinates (Xi, Yi) as well as the minimum number of

hops hi to reach the anchor node i.

The first stage of the DV-Hop algorithm is to find the number of hops from every node to each

anchor node (or reference node). Once an anchor node obtains the number of hops to other

anchor nodes, it estimates an average size for one hop with the use of the following correction

and broadcasts it to the nearby nodes:

HopSizei =

∑√
(xi − xj)2 + (yi − yj)2∑

hi
, i 6= j, all reference nodes j, (2.4)

being (xj , yj) the 2-D coordinates of the anchor j, and hi the distance in hops from anchor j to

anchor i. When an arbitrary unknown node receives the correction from a nearby anchor then

the unknown node computes the distance in meters to the every anchor node with the received

14 Chapter 2. State Of Art

272 NICULESCU AND NATH

an arbitrary node may then have estimate distances to landmarks, in meters, which can
be used to perform the trilateration, which constitutes the third phase of the method. The
correction a landmark (Xi, Yi) computes is

ci =
∑√

(Xi − Xj)2 + (Yi − Yj)2∑
hi

, i
= j, all landmarks j.

In the example in figure 1, nodes L1, L2 and L3 are landmarks, and node L1 has
both the Euclidean distance to L2 and L3 , and the path length of 2 hops and 6 hops, re-
spectively. L1 computes the correction (100 + 40)/(6 + 2) = 17.5, which is, in fact, the
estimated average size of one hop, in meters. L1 has then the choice of either computing
a single correction to be broadcasted into the network, or preferentially send different
corrections along different directions. In our experiments we are using the first option.
In a similar manner, L2 computes a correction of (40 + 75)/(2 + 5) = 16.42 and L3 a
correction of (75 + 100)/(6 + 5) = 15.90. A regular node gets an update from one of
the landmarks, and it is usually the closest one, depending on the deployment policy and
the time the correction phase of APS starts at each landmark. Corrections are distributed
by controlled flooding, meaning that once a node gets and forwards a correction, it will
drop all the subsequent ones. This policy ensures that most nodes will receive only one
correction, from the closest landmark. When networks are large, a method to reduce
signaling would be to set a TTL field for propagation packets, which would limit the
number of landmarks acquired by a node. Here, controlled flooding helps keeping the
corrections localized in the neighborhood of the landmarks they were generated from,
thus accounting for nonisotropies across the network. In the above example, assume A

gets its correction from L2 – its estimate distances to the three landmarks would be: to
L1 – 3 · 16.42, to L2 – 2 · 16.42, and to L3, 3 · 16.42. This values are then plugged into
the triangulation procedure described in the previous section, for A to get an estimate
position.

The drawbacks of “DV-hop” are that it will only work for isotropic networks, that
is, when the properties of the graph are the same in all directions, so that the corrections
that are deployed reasonably estimate the distances between hops. The advantages are
its simplicity and the fact that it does not depend on range measurement error. Measuring

Figure 1. “DV-hop” correction example.
Figure 2.10: DV-Hop correction example [7].

HopSize correction and the known number of hops obtained at the first stage. At the last stage

the unknown nodes perform trilateration to estimate its position. Following an example is used

to explain the functionality of the DV-Hop algorithm. Consider the network graph shown in

figure 2.10. L1, L2 and L3 represent the reference nodes whereas A is the unknown node that

needs to find its coordinates. L1 has both the Euclidean distance and the number of hops to

L2 and L3,which is 2 and 6 respectively. L1 computes the HopeSize correction with (2.4) which

in fact is the average size of one hope, in meters: (100+40)/(6+2) = 17.5 m. The same does

L2: (40+75) / (2+5) = 16.42 m and L3:(75+100)/(6+5) = 15.90 m. The unknown node gets

the average size per hop from one of closest anchor nodes. With this approach, the node A

chooses the correction computed by L2. Once it has the average size of one hop it computes

the distance to L1, L2 and L3 by using the minimum number of hops stored in its database.

Finally the unknown node starts a localization procedure to obtain its own coordinates with the

obtained distances to the anchor nodes. This localization procedure is called trilateration and

it is explained in section 2.2.1.2.

One of the drawbacks of DV-hop is that the network graph must not change,it must be static

in order to compute the number of hops as well as the euclidean distances between anchor nodes.

The advantages are its simplicity and the fact that it does not depend on range measurement

error due to the RSSI variation. There are other algorithms that follow the same approach but

instead of using the number of hops as a metric they uses other metrics such as the RSSI-based

distance or the true Euclidean distance. Some of these algorithms found in [7] are known as

DV-distance or DV-Euclidean.

The accuracy of the DV-Hop with trilateration is dependent on the number of anchor nodes

used to compute the average distance of a single hop. Simulations shown in [26] demonstrate

2.2. Introduction to Localization in WSN 15

that the best accuracy is around 50m when the anchor ratio is 5%. This accuracy is improved

when the number of anchor nodes increases.

There exist other methods based on the same distance vector approach focused to measure

ranges from an unknown node to neighbours that previously have successfully obtained its

position. Once an unknown node computes its position it broadcasts its computed coordinates

to its neighbours. These distributed algorithms known as iterative or successive refinement are

used to improve the accuracy. The accuracy of refinement algorithms is dependent on:

• the accuracy of the initial position estimates

• the magnitude of errors in the range estimates

• the average number of neighbours

• the fraction of anchor nodes

According to [27] the position error is less than 33% in a scenario with 5% range measurement

error, 5% anchor population and an average connectivity of 7 nodes.

Another range-free technique is the Amorphous Positioning based on DV-Hop [25]. It has

a similar approach than the DV-hop algorithm but only differs in the way how the HopSize

metric is computed at the second stage. The first stage of this algorithm is the same as DV-Hop

consisting to find the minimum number of hops to reach the anchors in the received beacons. In

the second stage each node computes locally an estimation of the single hop distance whereas

in the case of DV-Hop the correction is computed only by the anchor nodes. At the third stage,

once the estimated hop distance is obtained the nodes computes the distances to a minimum

of three anchors to obtain its estimated coordinates. The localization procedure at this stage is

trilateration. A more detailed explanation of the algorithm can be found in [28].

This section has covered some of range-free algorithms found in the literature. All of the

range-free algorithms are called as coarse grained localization algorithms because the accuracy

is not good in comparison with the range-based localization methods discussed next. The best

accuracy with range-free algorithms is in the order of meters whereas the best accuracy obtained

using range-based methods is in the order of few centimetres.

2.2.1.2 Range-based localization Schemes

As the name mentions these schemes estimates the distances between every pair of connected

nodes (sensors-to-sensors and sensors-to-anchors) by analysing a metric or any property of the

received signal that depends on the relative positions of the nodes. These ranging metrics are

described following:

16 Chapter 2. State Of Art

• RSSI: It is defined as the square of the voltage obtained by a receiver’s circuit that measures

the received signal strength. Also the RSSI is equivalent to the squared magnitude of the

signal amplitude which is the received power. The received power is a function of the

distance between the transmitter and the receiver that is proportional to d−γ , where γ is

the known as path-loss exponent. The minimum value of γ is 2 for LOS (Line-Of-Sight)

environments. The path-loss model at a distance dij from the transmitter j is shown in

(2.5) [5]:

PL(dij) = P0 − 10γlog10dij − vij

dij =
√

(xi − xj)2 + (yi + yj)2),

(2.5)

where P0 is the received power (dBm) at 1m distance and vij represents log-normal shadow

fading due to the multipath effect in wireless channels. The multipath effect appears when

several signals travel from the transmitter to the receiver through different spatial paths.

These signals arrive at the receiver with a certain time delay ∇τ and a certain phase

delay ∇φ. At the receiver the incoming signals replica are added thus causing either a

constructive or a destructive interference. Despite the simplicity of this ranging metric it

has the main drawback that the RSSI is random due to multipath. The effect of multipath

can be diminished by using a spread-spectrum method (e.g,direct-sequence or frequency

hopping) which averages the received power over a wide bandwidth reducing then the

interference in the unlicensed bands [5].

• ToA: Also named Time of Flight is another kind of ranging metric that obtains a distance

estimate by means of the direct signal propagation delay from the transmitter to the

receiver. This metric provides more accuracy than RSSI (in the order of few cm) because

it does not suffers variations due to multipath. However the provided high accuracy

implies a complex hardware and synchronized devices with a very good clock precision.

Inaccuracies in the clocks synchronizations translates directly to an imprecise location.

When synchronization is not available or can not be used because of the device hardware

constraints other alternatives can be used. An alternative is the combination of two signals

with different frequencies and hence different propagation speed as shown in figure 2.11

(usually both a RF signal and an ultrasound signal are used). The receiver obtains the

distance by multiplying the difference between the propagation time delay of each incoming

signal with the light speed.

Another alternative is the compensation of clock phase differences, a common practice

known as two-way ranging or round-trip ToA discussed below. Despite the high accuracy

that ToA provides it requires to measure the propagation time delay of the direct signal,

that is, it requires LOS conditions. If the wireless channel is NLOS(Non Line Of sight)

its performance is severely decreased. On the other hand ToA has the inconvenient of

2.2. Introduction to Localization in WSN 17

would be to calibrate each node against a reference node
prior to deployment, and store gain factors in non-volatile
storage so that the run-time RSSI measurements may be
normalized to a common scale.

3.1.2 ToA using RF and Ultrasound
To characterize ToA ranging on theMedusa nodes we mea-
sure the time di�erence between two simultaneously trans-
mitted radio and ultrasound signals at the receiver (�gure
5).

Transmitter Receiver

Distance = (T2-T1) x S

T1

T2

Radio Signal

Ultrasound Pulse

Distance

Figure 5: Distance measurement using ultrasound
and radio signals

The ultrasound range on the Medusa nodes is about 3 me-
ters (approximately 11-12 feet). We found this to be a conve-
nient range for performing multihop experiments in our lab
but we note that longer ranges are also possible at higher
cost and power premiums. The Polaroid 6500 ultrasonic
ranging module [17] for example has a range of more than
10 meters (the second generation ofMedusa nodes will have
a 10-15 meter range). We characterize ToA ranging by us-
ing two Medusa nodes placed on the
oor of our lab. We
recorded the time di�erence of arrival at 25-centimeter in-
tervals. The results of our measurements are shown in �gure
6. The x axis represents distance in centimeters and the y
axis represent the microcontroller timer counter value.

0 50 100 150 200 250 300
20

40

60

80

100

120

140

Distance (cm)

M
C

U
 ti

m
e

m
ea

su
re

m
en

t

Figure 6: Ulrasound Ranging Characterization

The speed of sound is characterized in terms of the micro-
controller timer ticks. To estimate the speed to sound as
a function of microcontroller time, we perform a best line
�t using linear regression (equation 2). s is the speed of
sound in timer ticks, d is the estimated distance between 2

nodes and k is a constant. For this model s = 0:4485 and
k = 21:485831.

t = sd+ k (2)

This ranging system can provide an accuracy of 2 centime-
ters for node separations under 3 meters. Like the RF sig-
nals, ultrasound also su�ers from multipath e�ects. Fortu-
nately, they are easier to detect. ToA measurement use the
�rst pulse received ensuring that the shortest path(straight
line) reading is observed. Re
ected pulses from nodes that
do not have direct line of sight are �ltered out using statis-
tical techniques similar to the ones used in [30].

3.2 Signal Strength vs. ToA ranging
On comparing the two ranging alternatives, we found that
ToA using RF and ultrasound is more reliable than received
signal strength. While received signal strength is greatly af-
fected by amplitude variations of the received signal, ToA
ranging only depends on the time di�erence, a much more
robust metric. Based on our characterization results we
chose ToA as the primary ranging method for AHLoS. Simi-
lar to RF signals, the ultrasound signal propagation charac-
teristics may change with variations in the surrounding en-
vironment. To minimize these e�ects, AHLoS dynamically
estimates the signal propagation characteristics every time
suÆcient information is available. This ensures that AHLoS
will operate in many diverse environments without prior cal-
ibration. If the sensor network is deployed over a large �eld,
the signal propagation characteristics may vary from region
to region across the �eld. The calculation of the ultrasound
propagation characteristics in the locality of each node en-
sures better location estimates accuracy. Table 2 summa-
rizes the comparison between signal strength and ultrasound
ranging. One possible solution we are considering for our
future work is to combine received signal strength and ToA
methods. Since the received signal strength method has
the same e�ective range as the radio communication range,
it can be used to provide a proximity indication in places
where the network connectivity is very sparse for ToA local-
ization to take place. The ultrasound approach will provide
�ne grained localization in denser parts of the networks. For
this con�guration, we plan to have the Medusa boards act
as location coprocessors for the WINS nodes.

4. LOCALIZATION ALGORITHMS
Given a ranging technology that estimates node separation
we now describe our localization algorithms. These algo-
rithms operate on an ad-hoc network of sensor nodes where
a small percentage of the nodes are aware of their positions
either through manual con�guration or using GPS. We re-
fer to the nodes with known positions as beacon nodes and
those with unknown positions as unknown nodes. Our goal
is to estimate the positions of as many unknown nodes as
possible in a fully distributed fashion. The proposed loca-
tion discovery algorithms follow an iterative process. After
the sensor network is deployed, the beacon nodes broadcast
their locations to their neighbors. Neighboring unknown
nodes measure their separation from their neighbors and
use the broadcasted beacon positions to estimate their own
positions. Once an unknown node estimates its position,
it becomes a beacon and broadcasts its estimated position
to other nearby unknown nodes, enabling them to estimate
their positions. This process repeats until all the unknown

170

Figure 2.11: ToA measurement using ultrasound and radio signals [8].

multipath in the sense that many received multipath signals can mask the peak of the

LOS signal. This drawback can be combat by using wider band signals. UWB(Ultra

WideBand) is high-bandwidth technology used common in ToA measurements.

• TDoA (Time Difference Of Arrival): this ranging metric obtains the unknown coordinates

(x, y) by resolving a 2× 2 equations system that takes into account the separation distance

between every pair of nodes with known coordinates. The basic idea is the following: the

unknown device sends a signal at the time instant t0 = t′0 + ε being ε the synchronization

time error. Then the signal is received to at least three reference nodes at the time instants

TA = t0 + τA, TB = t0 + τB and TC = t0 + τC . Finally the time difference of arrival is

computed to obtain the unknown coordinates. Mathematically it is formulated in (2.6).

Ti − t0 = 1
c

√
(x− xi)2 + (y − yi)2

Ti − Tj = 1
c

(√
(x− xi)2 + (y − yi)2 −

√
x2 + y2

)
i = B,C and j = A,

(2.6)

where (xi, yi) is the location of the receiver i, c is the light speed, A,B,C are the reference

nodes and (x, y) are the coordinates of the unknown node.

This ranging metric is widely used in GPS or in cellular networks in downlink as shown in

the figure 2.12. For this case the user’s terminal (the unknown node) computes the time

difference between the received signals from each synchronized base station. In other cases

it can be that unknown mobile itself sends the synchronized signals to each of the reference

nodes (uplink). As synchronization is needed TDoA presents the same disadvantage than

the ToA technique.

• RToA(Round-trip Time Of Arrival): This metric is also known as two-way ranging metric

because it measures the round trip time between the transmitter and the receiver. Thus

RToA avoids the need to have synchronized clocks which is required by ToA and TDoA

ranging metrics. With RToA, the original sensor transmits a signal at a time t0 to a

18 Chapter 2. State Of Art

17/02/2010 jpg_tdoa_gsm.jpg (325×318)

www.ietr.org/IMG/jpg_tdoa_gsm.jpg 1/1

Figure 2.12: TDoA measurement in celular networks [9].

second receiver sensor, which immediately replies with its own signal. The reply reaches

the original sensor at time tr which is the initial time t0 plus twice the propagation delay

and an internal processing time of the receiver sensor. The receiver parameter usually is

provided by the manufacturer:

tr = t0 + 2
d

c
+ ∆ (2.7)

A graphical example of this metric is shown in figure 2.13. The time measurement starts

at node A by sending a package to node B at time t0. When node B receives the package it

starts to processing which takes a time ∆. After processing a reply is sent to node A which

receives the package at time tr. Then the distance from node A to node B is obtained from

the difference between tr and t0. Double-sided two-way is used to avoid the inconvenient

of the clock drift when the processing time is much higher than the propagation time.

• AoA: this metric analyse the direction of the arrival signal, rather than the distance to

neighbouring sensors as done in the previous discussed metrics. There are two ways to

measure the angle of arrival as shown in figure 2.14. In any way AoA requires an array

of antennas embedded in the sensor. The first way is based on measuring the phase delay

φ = 2πfcτ of every received signal, being fc the narrowband signal frequency and τ the

difference in the arrival times for a received signal at each of the sensor antennas. The other

way uses the RSS ratio between two or more directional antennas to find the direction of

arrival that is to find the antenna where the signal is coming from.

This ranging metric requires several antennas embedded at the sensor implying an increase

of both the device dimension and therefore the cost. Hence AoA is not appropriated in a

WSN.

2.2. Introduction to Localization in WSN 19

RSS information can be used in most wireless technolo-

gies, since mobile devices are able to monitor the RSS as

part of their standard operation. The distance between sender

and receiver can be obtained with the Log Distance Path Loss

Model described in [8]. Unfortunately, the propagation model

is sensitive to disturbances such as reflection, diffraction

and multi-path effects. The signal propagation depends on

building dimensions, obstructions, partitioning materials and

surrounding moving objects. Own measurements show, that

this disturbances make the use of a propagation model

for accurate localization in an indoor environment almost

impossible [9]. A method to overcome this disadvantage

is fingerprinting, which is introduced in [10] and uses a

radio map. Fingerprinting is divided in two phases: In the

initial calibration phase, the radio map is built by moving

around and storing RSS values at various predefined points

of the environment. In the localization phase, the mobile

device moves in the same environment and the position is

estimated by comparing the current RSS values with the

radio map. A metric to compare the measured RSS values

with the radio map is Euclidean distance proposed in [10].

Other approaches use a Bayesian algorithm [11] or Delaunay

triangulation with lines of constant signal strength [12]. The

main disadvantage of radio map based methods is the high

manual effort to build the map in the calibration phase.

The use of Delaunay triangulation and interpolation allows

a radio map with a low density of calibration points and

reduces the time for manual generation of the map [9].

However, the accuracy of RSS based methods is insufficient

for the target application.

AoA determines the position with the angle of arrival from

fixed anchor nodes using triangulation. In [13] a method is

proposed, where a sensor node localizes itself by measuring

the angle to three or more beacon signals. Each signal

consists of a continuous narrow directional beam, that rotates

with a constant angular speed. Drawback of AoA based

methods is the need for a special and expensive antenna

configuration e.g. antenna arrays or rotating beam antennas.

ToA, RToF and TDoA estimate the range to a sender

by measuring the signal propagation delay. The Cricket

localization system [14] developed at MIT utilizes a radio

signal and a ultrasound signal for position estimation based

on trilateration. TDoA of these two signals are measured

in order to estimate the distance between two nodes. This

technique can be used to estimate the position of a node

in a WSN [15] or to track the position of a mobile robot

[16]. Ultra-Wideband (UWB) offers a high potential for

range measurement using ToA, because the large bandwidth

(> 500 MHz) provides a high ranging accuracy [17]. In

[18] UWB range measurements are proposed for tracking a

vehicle in a warehouse. The Ubisense system, developed at

the University of Cambridge, is a commercial UWB based

localization system [19]. Position estimation is performed

using both TDoA and AoA measurements. The anchor

nodes are equipped with antenna arrays in order to provide

AoA measurements. The TDoA information is determined

between pairs of anchor nodes connected with a timing

cable. The combination of AoA and TDoA measurement

allows a reliable position estimation of a mobile tag with

an guaranteed accuracy of 15 cm, even if only two anchor

nodes receive the signal. Owing to the complex technology,

the Ubisense location system is very expensive.

Nanotron Technologies distributes a WSN with ranging

capabilities, which avoids complex technology. This WSN

meets the requirements of the target application and is

described in the next section.

III. T LOC L S

Nanotron Technologies has developed a WSN which can

work as a Real-Time Location Systems (RTLS). The distance

between two wireless nodes is determined by Symmetrical

Double-Sided Two Way Ranging (SDS-TWR). SDS-TWR

allows a distance measurement by means of the signal prop-

agation delay as described in [20]. It estimates the distance

between two nodes by measuring the RToF symmetrically

from both sides.

The wireless communication as well as the ranging

methodology SDS-TWR are integrated in a single chip, the

nanoLOC TRX Transceiver [21]. The transceiver operates

in the ISM band of 2.4 GHz and supports location-aware

applications including Location Based Services (LBS) and

asset tracking applications. The wireless communication is

based on Nanotron’s patented modulation technique Chirp

Spread Spectrum (CSS) according to the wireless draft

standard IEEE 802.15.4a. Data rates are selectable from

2 Mbit/s to 125 kbit/s.

������ ������

����������	

����������	

���
����	�

���
����	�

����������	

����������	

���

�
�

��������

������

���

����
����	
�����������	� �
���
���

�
�
�
�
��
�
�
	
�

�
�

�
	
�
��
�
�
�
�
��
�
�
	
�

Fig. 1. Symmetrical Double-Sided Two Way Ranging [21]

SDS-TWR is a technique that uses two delays, which

occur in signal transmission to determine the range between

two nodes. This technique measures the round trip time and

avoids the need to synchronize the clocks. Time measurement

starts in Node A by sending a package. Node B starts its

measurement when it receives this packet from Node A and

stops, when it sends it back to the former transmitter. When

Node A receives the acknowledgment from Node B, the

3261

Figure 2.13: Double-sided two-way ranging technique [10].

IEEE SIGNAL PROCESSING MAGAZINE [61] JULY 2005

the same signal at two sensors is called the TDOA. A TDOA
measurement does not depend on the clock bias of the transmit-
ting sensor. For decades, TDOA methods have been used in
source localization for locating asynchronous transmitters; they
find application in GPS and cellular localization. Under certain
weak conditions, it has been shown that TOA with clock bias
(treated as an unknown parameter) is equivalent to TDOA [43].

AOA
By providing information about the direction to neighboring
sensors rather than the distance to neighboring sensors, AOA
measurements provide localization information complementary
to the TOA and RSS measurements discussed above.

There are two common ways that sensors measure AOA (as
shown in Figure 3). The most common method is to use a sen-
sor array and employ so-called array signal processing tech-
niques at the sensor nodes. In this case, each sensor node is
comprised of two or more individual sensors (microphones for
acoustic signals or antennas for RF signals) whose locations
with respect to the node center are known. A four-element Y-
shaped microphone array is shown in Figure 3(a). The AOA is
estimated from the differences in arrival times for a transmitted
signal at each of the sensor array elements. The estimation is
similar to time-delay estimation discussed in the section on TOA
measurements but generalized to the case of more than two
array elements. When the impinging signal is narrowband (that
is, its bandwidth is much less than its center frequency), then a
time delay τ relates to a phase delay φ by φ = 2π fcτ where fc is
the center frequency. Narrowband AOA estimators are often for-
mulated based on phase delay. See [44]–[46] for more detailed
discussions on AOA estimation algorithms and their properties.

A second approach to AOA estimation uses the RSS ratio
between two (or more) directional antennas located on the sen-
sor [see Figure 3(b)]. Two directional antennas pointed in differ-
ent directions, such that their main beams overlap, can be used
to estimate the AOA from the ratio of their individual RSS values.

Both AOA approaches require multiple antenna elements,
which can contribute to sensor
device cost and size. However,
acoustic sensor arrays may
already be required in devices for
many environmental monitoring
and security applications, in
which the purpose of the sensor
network is to identify and locate
acoustic sources [47]. Locating
the sensors themselves using
acoustics in these applications is
a natural extension. RF antenna
arrays imply large device size
unless center frequencies are
very high. However, available
bandwidth and decreasing manu-
facturing costs at millimeter-
wave frequencies may make them

desirable for sensor network applications. For example, at 60
GHz, higher attenuation due to oxygen absorption helps to
mitigate multipath and accurate indoor AOA measurements
have been demonstrated [48].

MAJOR SOURCES OF ERROR AND STATISTICAL MODEL
AOA measurements are impaired by the same sources discussed
in the TOA section: additive noise and multipath. The resulting
AOA measurements are typically modeled as Gaussian, with
ensemble mean equal to the true angle to the source and stan-
dard deviation σα . Theoretical results for acoustic-based AOA
estimation show standard deviation bounds on the order of
σα = 2◦ to σα = 6◦, depending on range [49]. Estimation errors
for RF AOA on the order of σα = 3◦ have been reported using
the RSS ratio method [50].

CALIBRATION AND SYNCHRONIZATION
It is not likely that sensors will be placed with known orienta-
tion. When sensor nodes have directionality, the network local-
ization problem must be extended to consider each sensor’s
orientation as an unknown parameter to be estimated along
with position. In this case, the unknown vector θθθ is augmented
to include the orientation of each sensor.

The models presented earlier are sufficient to find bounds on
localization performance in cooperative localization. These
lower bounds are not a function of the particular localization
algorithm employed. Thus we present some of these perform-
ance limits in the following section before discussing current
algorithm research.

LIMITS ON LOCALIZATION COVARIANCE
The CRB provides a means for calculating a lower bound on the
covariance of any unbiased location estimator that uses RSS,
TOA, or AOA measurements. Such a lower bound provides a
useful tool for researchers and system designers. Without test-
ing particular estimation algorithms, a designer can quickly find
the “best-case” using particular measurement technologies.

IEEE SIGNAL PROCESSING MAGAZINE [61] JULY 2005

[FIG3] AOA estimation methods. (a) AOA is estimated from the TOA differences among sensor
elements embedded in the node; a four-element Y-shaped array is shown. (b) AOA can also be
estimated from the RSS ratio RSS1/RSS2 between directional antennas.

1

2 3

4

AOAα

Source Signal
Sensor Node

(a)

AOA, α

RSS

RSS1

RSS2

Antenna 1 Antenna 2

(b)

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on February 11, 2010 at 13:28 from IEEE Xplore. Restrictions apply.

Figure 2.14: AoA estimation methods.(a) AoA is estimated from the ToA differences among

antennas elements embedded in the sensor node. (b) AoA can also be estimated from the RSS

ratio RSS1�RSS2 between directional antennas[5].

All of the previous discussed techniques tries to estimate the distances to the reference nodes

(except AoA) at the first stage. At the second stage, the unknown node estimates its relative

position by means of the following procedures known as trilateration or multilateration:

• Trilateration/multilateration: this technique shown in figure 2.15 is valid only in direct

communications between unknown sensors to anchors. The main idea of this technique is

to find those coordinates (x, y) where a set of n corresponding circles to n anchors intersect.

If n = 3 the procedure is known as trilateration whereas if n = 3 the procedure is known

as multilateration. The unknown node obtains the distances d1 and d2 from the anchors

AN1 and AN2 with the RSSI. A third AN3 anchor node is needed to solve the ambiguity

of the two possible locations determined by the two circle’s intersections.

20 Chapter 2. State Of Art

TSI Status : Draft Page 20

This document is produced under the EC contract 211998.
It is the property of the AWISSENET consortium and shall not be distributed or reproduced without the formal approval of the AWISSENET Steering

Committee

(x1,y1)

(x2,y2)

(x3,y3)

(x,y) d1

d2

d3

AN1

AN2

AN3

UN

Figure 3. Localization using distance measurements

According to Figure 33, the position of the UN node (x,y) can be obtained using the positions of
the ANs: (x1,y1), (x2,y2) and (x3,y3), and the distances from the UN to the ANs: d1, d2, and d3, by
solving the following nonlinear set of equations:

 3 and 1,2 for)()(
22

idyyxx
iii

 (1)

The system (1) is overdetermined, but a solution should exist if the distances d1, d2, and d3 were
exactly computed. In practice, however, distances are obtained from measurements that introduce
unavoidable errors, and also it is convenient to foresee the possibility of involving more than three
ANs in the localization process. For these reasons, it is better to reformulate the problem of
positioning the UN as a more general optimization problem to be solved:

Given N (with N 3) ANs located at points (x1,y1), (x2,y2), , (xN,yN), and at measured distances d1,

d2, , dN from the UN, we define the following quadratic cost function:

N

i

iiii
dyyxxwyxC

1

2
22

)()(),((2)

where w1, w2, , wN are positive “weights” that emphasize the most reliable measurements. The
minimization of (2) leads to the so-called weighted nonlinear least squares (WNLS) estimation of
the position of the UN:

),(minarg)ˆ,ˆ(
),(

yxCyx
yx

 (3)

Finding the solution of (3) is a difficult nonlinear optimization problem, and so it is better to try
simpler suboptimal approaches.
For instance, if we square (1) and define the new auxiliary variables:

NiyxR

yxR

iii
1

22

22

 (4)

the resulting system of equations (assuming an arbitrary number N of ANs) is now:

Figure 2.15: Trilateration using distance measurements. The circles represent the coverage area

of the sensor nodes [2].

According to 2.15 the unknown coordinates (x, y) can be find by solving a set of linear

equations that represent the circle equations shown in (2.8).

√
(x− xi)2 + (y − yi)2 = di for i = 1, 2, 3, (2.8)

where di is the measurement distance between the unknown sensor and the anchor i with

coordinates (xi, yi). Notice that the only parameter in (2.8) that can affect the accuracy of

the location error is the measured distance. It is known that the accuracy of the estimated

distance is dependent on the used ranging metric. The accuracy of the measured distance

by the RSSI being the worst ranging metric can be increased if the same approach in

(2.8) is realized with more than three anchor nodes. It known as multilateration and the

problem which is generalized to N anchor nodes focuses to solve the following [2]:

C(x, y) =
N∑
i=1

wi

(√
(x− xi)2 + (y − yi)2 − di

)2
for i = 1, . . . , N, (2.9)

where w1, w2, . . . , N are positive weights that emphasize the most reliable measurements

(e.g, they can be 1/0 or any other quantity directly related to the quality of the radio link).

The minimization of (2.9) is an unconstrained optimization problem in the unknowns (x, y).

(x̂, ŷ) = argmin
x,y

C(x, y) (2.10)

2.2. Introduction to Localization in WSN 21

Finding the solution of (2.10) is a difficult nonlinear optimization problem. Therefore

some suboptimal approximations can be used to transform the nonlinear problem in a

linear problem [2]. Thus, squaring (2.8) and defining the following variables:

R = x2 + y2

Ri = x2
i + y2

i , 1 6 i 6 N

(2.11)

results in the following system of equations:

−2xix− 2yiy +R = d2
i −Ri , 1 6 i 6 N (2.12)

which are linear in (x, y,R) and thus can be written in a matrix form:

Az = b, (2.13)

where:

z = [x, y,R]T

A =



−2x1 −2y1 1

−2x2 −2y2 1
...

...
...

−2xN −2yN 1



b =
[
d2

1 −R1, d
2
2 −R2, . . . , d

2
N −RN

]T

(2.14)

Now the solution of (2.13)is computed below by WLS(Weighted Least Squares):

ẑ = argmin
z

(Az− b)TW(Az− b)

W =



w1 0 . . . 0

0 w2 . . . 0
...

...
. . .

...

0 0 . . . wN


(2.15)

The solution of (2.15) can be seen in (2.16) which gives the estimation (x̂, ŷ) as the first

and second components of the vector ẑ:

ẑ = (ATWA)−1ATWb (2.16)

22 Chapter 2. State Of Art

One the one hand notice that this method is fully centralized because all the variables

(distance measurements) are combined in a central processing unit to perform localization.

On the other hand multilateration can provide better accuracy than other range-based

techniques since more anchors nodes with known positions and optimal weights can be

used together to find the unknown coordinates. However this technique is valid when the

sensor nodes are in the coverage area of the anchor nodes.

2.2.2 Communication Technology

The accuracy in the location error is dependent on the other factors in addition to the used

localization localization techniques. The communication technology is also a very important

requirement for localization in WSN. This section discusses some of the current wireless com-

munication technologies and their impact in WSN: WLAN, Bluetooth, UWB,and ZigBee [11].

In principle they can be applied in WSN because their range is short.

• WLAN: this wireless technology was developed to provide wireless communication in the

unlicensed ISM(Industrial, Scientific and Medical) band of both 2.4 GHz and 5 GHz to the

original LAN(Local Area Networks) networks which computers communicated by means

of wires. The WLAN specifications are found in its standard IEEE 802.11. This standard

is kept by the WiFi Alliance organization providing interoperability between devices from

different manufacturers. These specifications adapts the physical and MAC(Medium Ac-

cess Control) layer of the original Ethernet protocol to provide communication through

air. The following family of WLAN standards are extended in a lot of places to provide

wireless communication to hundreds of users:

– IEEE 802.11g: this standard is an amendment of its predecessor, IEEE 802.11b

which was based on either on DSSS(Direct Sequence Spread Spectrum) with a gross

throughput upto 11 Mbps. The allowed bandwidth in both 800.11g and 802.11b is

20MHz and the non-overlapping channels in the 2.4 GHz band are 1, 6 and 11. The

physical layer of 802.11g is based on multiple carrier or OFDM(Orthogonal Frequency

Division Multiplexing) with digital constellations BPSK(Binary Phase Shift Keying),

QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation)

and 64QAM. This improvement in the IEEE 802.11g physical layer leads to a gross

throughput upto 54 Mbps when using the 64QAM constellation. The coverage is

up to 300 m which can be improved by means of directive antennas and powerful

transmitters.

– IEEE 802.11n: it is a recent amendment which improves both the throughput and

the coverage of the previous 802.11 standards by adding more than one antenna at

the transmitter and at the receiver. The last is called multiple-input multiple-output

2.2. Introduction to Localization in WSN 23

(MIMO) with notation M × N which means that the input to the wireless channel

is through M antennas whereas the output is from N antennas. Several antenna

configurations cane be considered: 2x2,2x3,3x3. Another improvement with respect

to the previous standards is its ability to operate under the both both bandwidths

20 MHz and 40 MHz. This standards specifies a maximum gross throughput of 600

Mbps under the assumption of having 4 spatial streams, 64QAM constellation, 40

MHz channel bandwidth and GI(Guard Interval) of 800 ns.

Several positioning/tracking experiments with WLAN technology have been carried on,

although most of them in indoor scenarios [29][30][31][32]. The set of ToF and RSSI ranging

metrics have been proved for localization in WLAN [33][34][35]. Taking the advantage that

ToF performs better than RSSI in terms of a reduced location error (in order of cm), its

inherent hardware complexity can be exploited in WLAN networks as they are not energy-

constrained as happens in WSN.

• Bluetooth known with its standard IEEE 802.15.1 is the set of the physical and MAC layer

specifications for a WPAN. A comparison with respect to WiFI is the following:

– Less coverage: this parameter depends on the bluetooth chipset class. Class-1 with

a range of 100 m and a maximum allowed power of 20 dBm, Class-2 with a range of

10 m and a maximum allowed power of 4 dBm and Class-3 with 1 m of coverage and

0 dBm of transmit power.

– Less throughput: the nominal transmission speed can reach upto 1 Mbps (in practice

around 720 Kbps) with the Bluetooth Version 1.2 and upto 3 Mbps (in practice

around 2.1 Mbps) with the enhancement Bluetooth 2.0+EDR (Enhancement Data

Rate).

– Pysical layer was based on FHSSS(Fast-frequency Hopping Spread Spectrum) and the

modulation GFSK(Gaussian Frequency Shift Keying) in older versions. Newer ver-

sions use a combination between the modulation GFSK and either of the modulations

π\4-DQPSK (at its lower rate of 2 Mbps) and 8DPSK (at its higher rate of 3 Mbps).

The same ISM frequency band is used: 2.4 GHz.

– Lower energy consumption (in the order of mA even in stand-by mode), cheaper and

smaller devices.

Bluetooth has the main advantage that can be used to transfer data between small devices

such as mobile phones, PDAs, game consoles in areas without WiFI coverage. Currently

most of the personal devices carry bluetooth chipsets. Bluetooth technology is a better

choice than WiFI for WSN since it provides less energy consumption and less throughput

(a high amount of resources is not needed in WSN). Several applications using bluetooth

24 Chapter 2. State Of Art

16 channels at 2.4 GHz offering 250 kbps, 10 channels at 915
MHz offering 40 kbps, or one channel at 868 MHz offering 20
kbps, ZigBee provides modest bandwidth that enables
multi-year battery life from a coin cell in designs with a low
duty-cycle (less than 0.1%).

Fig.1 ZigBee topology Fig.2 Operating frequency bands.

1. IEEE 802.15.4 STANDARD

The IEEE standard brings with it the ability to
uniquely identify every radio in a network as well as the
method and format of communications between these
radios, but does not specify beyond a peer-to-peer
communications link a network topology, routing schemes
or network growth and repair mechanisms [3].

Fig.3 IEEE 802.15.4 Stack

The IEEE 802.15.4 standard, released in May 2003, was
selected by the ZigBee Alliance as its “wheels and chassis”,
upon which ZigBee networking and applications are
constructed. This is not without its challenges, as the Alliance
does not control the IEEE specification. However, many of the
same people who sit in the IEEE 802.15 Working Group are
deeply involved in the ZigBee standard; this relationship has
meant that both the IEEE and the ZigBee specifications track
one another fairly well. Figure 3 shows the relative
organization of the IEEE radio with respect to the ZigBee
functionality [4][5].

2. ZigBee/IEEE 802.15.4 - General Characteristics:

• Dual PHY (2.4GHz and 868/915 MHz)

• Data rates of 250 kbps (@2.4 GHz), 40 kbps (@ 915
MHz), and 20 kbps (@868 MHz)

• Optimized for low duty-cycle applications (<0.1%)

• CSMA-CA channel access Yields high throughput and
low latency for low duty cycle devices like sensors and
controls

• Low power (battery life multi-month to years)

• Multiple topologies: star, peer-to-peer, mesh

• Addressing space of up to:

- 18,450,000,000,000,000,000 devices (64 bit IEEE
address)

- 65,535 networks

• Optional guaranteed time slot for applications requiring
low latency

• Fully hand-shaked protocol for transfer reliability

• Range: 50m typical (5-500m based on environment)
[6][7]

IV. THE SYSTEM DIAGRAM AND PROJECT SCHEME
What the factory need, in many cases, is a standards-based

wireless technology having the performance characteristics that
closely meet the requirements for reliability, security, low costs
and low power. They require longer battery life and lower data
rates and less complexity than available from existing wireless
standards. This standards-based, interoperable wireless
technology will address the unique needs of low data rate
wireless control and sensor-based networks. ZigBee is the best
choice.

1. Hardware platforms

A WSN project will be designed under ZigBee technology
to be used in petrol-chemical industry, with the ZigBee device
and development kits available in market, Which are
MC1319x. The MC1319x is a short range, low power, 2.4GHz
Industrial, Scientific and Medical (ISM) band transceiver
designed to be IEEE® 802.15.4 Standard compliant. Typical
intended applications include Remote control and wire
replacement in industrial systems such as wireless sensor
networks. The 13192-EVB is an 802.15.4/ZigBee evaluation
board based on the MC13192, 2.4GHz transceiver and the
MC9S08GT60 MCU. The 13192-EVB provides both serial and
USB connectivity to a PC for easy evaluation [8].

Fig. 4 system diagram of hardware platforms
In this design the data sampling unit has included the

temperature, the gas pressure and the acceleration instrument.

(1) temperature sensor MLX90601: Analog linear
output; PWM output, SPI programmable interface; Precision
±0.2 ℃.

(2) pressure sensor MS5534AP: Integrated the ADC
interface IC and anti-pressure sensor which has provided 16
pressures parameters output. Moreover the module has also
contained the parameter which 6 may read, facilitates the

286

Authorized licensed use limited to: Universitat Autonoma De Barcelona. Downloaded on January 19, 2010 at 06:03 from IEEE Xplore. Restrictions apply.

Figure 2.16: a)Zigbee networking topology, b)Zigbee operating frequency bands [11].

with RSSI in WSN have been carried on to perform localization as it does not require

extra hardware. [36][37][38].

• UWB [5]: this wireless technology employs radio signals composed by narrow pulses of

very short duration (the order of nanoseconds). In the frequency domain it corresponds

to a bandwidth greater than 500 MHz. Some of the standards that cover UWB are IEEE

802.15.3a and IEEE 802.15.4a. Furthermore, UWB provides high data rates (at least 480

), low power consumption and low cost but at the expenses of very low range. Digital

home applications as well as other applications requiring short range can take advantage

of this broadband wireless technology. The very high bandwidth of UWB in comparison

to the other wireless technologies leads to a very high temporal resolution making it ideal

for high-precision radiolocation applications. Therefore the use of UWB with the ranging

metric ToA leads to a very high accuracy (the order of few cm). Several localization

applications with UWB in WSN are reported in [39][40][41].

• Zigbee technology provides low data rate, low power consumption, low transmit rate,

low cost and mainly it is addressed to remote control applications. The standardization

of Zigbee is IEEE 802.15.4 specifying several network topologies such as mesh, star and

P2P(Point to Point). The physical layer is based on DSSS and the range per node can

be upto 500 m in LOS conditions [42] depending on the transmit power and the used

antenna. Another interesting feature is the use of IPv6 (IP version 6, that is a 128-bit IP

address with the least significant 64-bit for host addressing) allowing to form a network of

thousands or even million of devices. The adopted standard defines different frequencies

supported by Zigbee each of them corresponding to a certain number of channels and a

throughput: 16 channels at 2.4 GHz offering 250 Kbps, 10 channels at 915 MHz offering

40 Kbps and 1 channel at 868 MHz offering 20 Kbps. Figure 2.16 shows two kinds of

network topologies as well as the supported operating frequency bands.

Since May 2003 Zigbee is under the tutelage of Zigbee Alliance upon which Zigbee devices

and applications are constructed. Furthermore Zigbee is more attractive than Bluetooth

2.2. Introduction to Localization in WSN 25

for WSN because the energy consumption is much lower (the order of µA in standby

mode). Following it shows the general Zigbee/804.15.4 features:

– Dual PHY (2.4 GHz and 868/915 MHz)

– Data rates of 250 Kbps (2.4 GHz), 40 Kbps (915 MHz), and 20 Kbps (2.4 GHz)

– Optimized for low energy consumption (< mA)

Zigbee is widely used in several WSN applications. In the context of positioning zigbee

has the drawback of a bad clock resolution being inappropriate the use of ToA ranging

techniques. Taking the advantage of the RSSI circuitry simplicity, it can be used to perform

localization. Some practical experiments demonstrate location errors in the order of a few

centimetres or a few meters [43][10][44].

2.2.3 Positioning strategy

This section is addressed to give an explanation of the different positioning strategies that

can be used in WSN. As explained in section 2.1 there are two positioning strategies to be

considered: non-cooperative and cooperative. In the non-cooperative the unknwon nodes have to

communicate with at least three reference nodes to obtain the 2-D coordinates or 4 anchor nodes

to obtain 3-D coordinates. It happens in GPS. With this strategy the problem of obtaining the

coordinates can be solved with the known trilateration/multilateration. However this positioning

procedure can be carried with the requirement that the unknown nodes must receive signals

from the anchor nodes of course with a power greater than its sensibility. This requirement

makes difficult the use of this non-cooperative strategy in those scenarios where only few anchor

nodes can be positioned in a large area of sensor networks. In order to combat this issue a

cooperative strategy can be taken into account. In cooperative scenarios every node in the

network cooperates with all of its neighbours to carry on the positioning, for example measuring

the pairwise distances. This strategy is preferable in most of the WSN scenarios since more

unknown nodes than anchor nodes are distributed in big geographical areas like a forest and

also there can be nodes without direct communication to the anchor nodes. On the other hand

the cooperative strategy allows the use of two anchor nodes instead of three. By allowing the

cooperation between nodes, the ambiguity that appears in non-cooperative with two anchor

nodes is solved by the pairwise distances measurements. It is shown in figure 2.17.

When considering cooperation, the adopted algorithm can be classified in both centralized

and distributed:

1. Centralized Algorithms: these algorithms require that all the unknown nodes send their

distance measurements to a central processing unit which runs a centralized algorithm. The

centralized algorithm computes the relative positions of all the unknown nodes. Finally

26 Chapter 2. State Of Art

Anchor node

Regular node

Ambiguos solution

(a) (b) (c)

1
2

3

4

5

1
2

3

4

5

1
2

3

4

5

3 3

4 4

Figure 2.17: a)Network with three anchor nodes and two unknown nodes, b)Ambiguity existing

in non-cooperative strategy when using only two anchor nodes, c) The ambiguity disappear when

cooperation between nodes 3 and 4 is allowed. As observed only one of the green circumferences

intersects with one of the blue circumferences in b).

the algorithm applies a transformation operation given the coordinates of the anchor nodes

to find the absolute positions. Once the algorithm computes to absolute positions, these

results are sent back to the queried nodes.

The centralized approach has the advantage that can perform complex calculations or even

iterative complex calculations because the fusion center does not have energy/hardware

constraints as it happens in the sensor nodes. However a disadvantage of this strategy is

that all nodes must reach the central processor unit with the consequence of having an

increase of the network traffic and a possible bottleneck near or at the fusion center. On the

other hand, the performance of the whole network depends on the robustness of the central

unit. Currently there are two suitable centralized algorithms for large-scale networks with

low density deployment of reference nodes: MLE(Maximum Likelihood Estimator) and

MDS(Multilateration Scaling) [45]:

• MLE assumes that the statistical of the data is known and can be described with a

statistical model (e.g.,Gaussian or log-normal). MLE is theoretically optimal in the

sense that it is asymptotically efficient when the SNR(Signal To Noise Ratio) ratio

increases. When the network is large, the number of unknown parameters (the 2-D

unknown coordinates) increase in a factor of 2N being N the number of unknown

nodes. Thus it may not be computationally feasible to determine the solution of

MLE by using brute-force grid-search method [45]. In these cases the MLE must be

solved using iterative nonlinear algorithms such as the NLS(Non linear Lest Squares).

2.2. Introduction to Localization in WSN 27

Iterative algorithms have the drawback that they depend on the initial value and in

general they need a well-conditioned matrix to assure a convergence. Unless the MLE

is initialized to a value closed to the optimum it is possible that the algorithm does

not find the global optimum [5]. Hence convex constraints are presented to force the

unknown sensor’s location within a radius r and/or angle range from another sensor.

Thus the MLE can be treated as a convex optimization problem. Another additional

problem related to MLE is the statistical model dependency with the measurements.

MDS combats these problems.

• MDS algorithms are widely used in many areas, including statistics, psychology, soci-

ology, political science and can be used as well to formulate sensor localization from

range measurements as an LS problem [45]. These algorithms consists of two stages:

the first stages the MDS finds those locations that minimizes the mean square error

with the given pairwise distances of all nodes in the network. The coordinates or

relative positions found by MDS in the first stage are in a different coordinate system

than the true given by the anchors positions. Thus a second stage is required which

applies a transformation operation to the relative positions to obtain the absolute

positions in the true coordinate system. Other MDS-based techniques use a weight-

ing scheme for the measurements according their accuracy, and thus improving the

localization error [5].

2. Distributed Algorithms: in contrast to the centralized algorithms these algorithms do not

consider the use of a central unit to handle the calculations. Each node must compute

its own position with the support of its neighbour nodes. It provides an advantage to the

centralized algorithms since each node obtains faster its position as it does not need to

reach and wait for a result from the fusion center that could be far away. Other advantage

is that the positioning can be performed even if the size of the network increases. However

these algorithms need to run several iterations to find an accurate estimate. Distributed

algorithms for cooperative localization generally fall into one of following categories [5]:

• Network multilateration: each sensor estimates the shortest path distance through

multi-hop algorithms to at least three visible reference nodes. Once the distances are

obtained multilateration technique is carried on. Examples of these algorithms are

the well known range-free algorithms DV-hop discussed in section 2.2.1.

• Successive refinement: these algorithms known as non-Bayesian algorithms try to find

the coordinates of all the unknown nodes in the network with an iterative procedure.

Initially there are two subsets of nodes: one subset A with known nodes locations

and another subset B with unknown nodes locations. At each step those nodes in the

subset B which can measure the RSSI from a minimum of three other nodes in the

subset A compute multilateration to obtain their positions. Once they found their

28 Chapter 2. State Of Art

positions they become new members in the subset A. This procedure which is known

as IMM(Iterative Multilateration)[45] is repeated for all the unknown nodes until the

subset B becomes empty.

The convergence of these algorithms is always a drawback and on the other hand the

global accuracy depends on the local results computed by every node.

Most of the centralized and distributed algorithms must face the high relative costs of commu-

nication. Centralized algorithms in large networks require each sensor’s measurements to be

sent over many hops to a central processor. In contrast with the distributed algorithms the

sensors send messages only one hope (to its direct neighbours). However these algorithms re-

quire a certain number of iterations to converge until all nodes obtain their accurate positions.

Distributed algorithms performs better than centralized when the number of iterations is less

than the average number of hops [5]. There exist hybrid algorithms that combine both cen-

tralized and distributed to reduce the energy consumption per node. These hybrid algorithms

are applied when the network is fractioned to a group of clusters. Recall that a cluster in a

distributed WSN is a set of nodes with one selected candidate called manager node or cluster

head to be the local processor unit. As an example a Bluetooth piconet can be seen as a cluster

with one master and several slaves. Each manager node carries out centralized algorithms by

using the gathered data from the nodes in the cluster where it belongs and thus estimating a

map of the cluster. Then a distributed algorithm is executed taking the computed results from

all the manager nodes to merge and optimize the local estimates such as described in [46]. Such

hybrid algorithms are a promising topic for future research. There are applications that use the

concept of clusters for target tracking issues[22] [47].

2.3 Introduction to tracking techniques for mobile nodes

All the localization techniques discussed in previous sections are focused only in scenarios without

mobility. For example, multilateration, MDS and MLE can not be applied to locate a set of

one or more mobile unknown nodes. The term positioning usually is referred for fixed points.

There exist a lot of algorithms for tracking but the most common and used in practice are

two: KF(Kalman filter) and EKF(Extended Kalman Filter) [10][48][49]. The main differences

between them is how they make the assumption of the signal model: linear in Kalman filter and

nonlinear in Extended Kalman filter. This section gives a brief introduction to these tracking

algorithms [50].

2.3. Introduction to tracking techniques for mobile nodes 29

2.3.1 Kalman Filter

The system dynamic model used by Kalman filter is the first order Gauss-Markov model which

has the form shown in (2.17):

x(k + 1) = f(x(k)) + u(k) k + 1 ≥ 0, (2.17)

where u[n], called the process noise, excitation noise or model noise is WGN(White Gaussian

Noice) with variance σ2
u ∼ N (µu, σ

2
u). On the other hand x[−1] corresponds to the initial state

of Kalman and it is independent of u[n]. In the context of Kalman filter the equation in

(2.17) is called as state space model which estimates the state at the next time sample. It

is clear that with only one sample it cannot obtain an estimate of the temporal tendency of

the signal. It needs all the stored samples from n = 0 up to n = n − 1. In other words,

x̂[n] is an estimation based on the previous observations or measurements consisting of a scalar

sequence {z[0], z[1], . . . , z[n]} with n increasing. Such operation is referred as filtering because the

previous data is filtered to obtain the actual state. Therefore, x̂[n] is a recursive estimator which

is based on the sequential Bayesian MMSE(Minimum Mean Square Error) estimator. Under

the Gaussian assumption for the initial state and all the noises entering into the system, the

Kalman filter is the optimal MMSE state estimator. If the initial state is not Gaussian then

the Kalman filter algorithm is the best LMMSE(Linear Minimum Mean Square Error) [12].

Furthermore the scalar observation can be extended to vector observations (z[0], z[1], . . . , z[n])

and also the scalar state can be extended to vector state x[n] = Fx[n− 1] + u[n]. Summarizing

to a more (not the most) general case when both the state and observation are vectors, which

is the most common in practice:

x(k + 1) = Fx(k) + G(k)u(k)

k + 1 ≥ 0

z(k + 1) = H(k + 1)x(k + 1) + w(k + 1),

(2.18)

where x(k+ 1) is the p× 1 signal vector, z(k+ 1) is the M × 1 measurement vector and F,G,H

are known matrices of dimensions p× p, p× r and M × p, respectively. The matrix F is called

the transition matrix, as it does the transition operation from the previous state to the current

state and the matrix H is known as observation matrix. It can be seen in (2.18) that the

process noise vector G(k)u(k) ∼ N (0,Q) has dimensions p × 1. Moreover this process noise

is independent from sample to sample because it is WGN but is dependent of the noise vector

v. On the other hand the observation noise vector w(k + 1) ∼ N (0,R) as well is a WGN with

dimensions M × 1. The matrices Q and R are called the process noise covariance matrix of the

process noise G(k)u(k) and measurement noise covariance matrix of the measurement noise w.

30 Chapter 2. State Of Art

The MMSE estimator of x(k + 1) based on (x(k),x(k − 1), . . . ,x(−1)) or also defined as:

x̂(k + 1 | k, k − 1, k − 2, . . . ,−1) = E(x(k + 1) | x(k),x(k − 1), . . . ,x(−1)) (2.19)

can be solved through the following two Kalman stages that minimize the mean square error.

1. Prediction stage: this stage predicts the current data based on the previous x[n−1] , n ≥ 0

gathered data. This prediction is applied to the state vector of dimensions p× 1 and also

to the MMSE matrix of dimensions p × p. The set of involved equations are (2.20) and

(2.21).

State Prediction:

x̂(k + 1 | k) = Fx̂(k | k) + G(k)u(k) (2.20)

State Prediction Covariance (p× p):

P(k + 1 | k) = FP(k | k)F′ + Q(k) (2.21)

2. Correction stage: this stage minimizes the measurement residual between the measurement

z(k + 1) and the measurement prediction ẑ(k + 1 | k) with the Kalman gains. The set of

equations used in this stage are (2.23),(2.24) and (2.25).

Innovation Covariance (p× p):

S(k + 1) = R(k + 1) + H(k + 1)P(k + 1 | k)H(k + 1)′ (2.22)

Filter Gain (p×M):

W(k + 1) = P(k + 1 | k)H′(k + 1)S(k + 1)−1 (2.23)

Updated state estimate:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + W(k + 1)(z(k + 1)−H(k + 1)x̂(k + 1 | k)) (2.24)

Updated state covariance (p× p):

P(k + 1 | k + 1) = P(k + 1 | k)−W(k + 1)S(k + 1)W(k + 1)′ (2.25)

P(k+ 1 | k) can be seen as a priori estimate state covariance matrix whereas P(k+ 1 | k+ 1) is

a posteriori estimate state covariance [13].The Kalman gain matrix W is recursively found such

that the posteriori error covariance matrix is minimized. Also W can be seen as a weighting

factor that reflects the relative accuracy of the predicted state versus the new measurement [12]:

2.3. Introduction to tracking techniques for mobile nodes 31

• If the new measurement is deemed to be ”more accurate” (low variance) than the predicted

state(large variance), then the filter gain will be relatively high.

• If the predicted state is deemed to be ”more accurate” (low variance) than the new mea-

surement, then the gain will be relatively low.

Figure 2.18 offers a complete block diagram of the operation of the filter with the set of involved

a priori and a posteriori estimates.

208 5 STATE ESTIMATION IN DISCRETE-TIME LINEAR DYNAMIC SYSTEMS

known input (e.g., control, platform motion, or sensor pointing) enters (usually)
the system with the knowledge of the latest state estimate and is used by the
state estimator to obtain the predicted value for the state at the next time.

The state estimation cycle consists of the following:

1. State and measurement prediction (also called time update)
2. State update (also called me~s~~erne~t sedate)

The state update requires the filter gain, obtained in the course of the covari-
ante calculations. The covariance calculations are independent of the state and
measurements (and control - assumed to be known) and. can, therefore, be
performed ~~~~~e.

The Workhorse of Esti~atiou - The Kahnan IMter

wd

Evolution
of the system

(true state)

Known input
(control or

sensor
motion)

Estimation State covariance
of the state computation

State at tk Input at tk State estimate at tk

4k) G4 i(kjk)

+ +

Transition to tk+l State prediction

z(k $1) = ~(~}~{~) *I t) qk: -I- ljk) =

-t G(k)+) + v(k) F(k)Ic(kIk) + G(k)u(k)

Measurement prediction

H(k + l)iqk + l/k)

r

w(k + 1)
Measurement at tk+l

) z(k -+ 1) =

I-f@ + l)x(k -I- 1) -5 w(k + 1)

Measurement residual
c v(k + 1) =

z(k + 1) - 2(k + ljk)

State covariance at tk

I 1
+

I 1

Updated state estimate

q/c + lpc + 1) =

qlc + Ilk) + W(k -t- l)v(k + 1)

i

Updated state covariance

P(k + ilk + 1) = P(k + ljk)

- IV(k -5 l)S(k -t l>W(k + 1)’

Figure 5.2.4-l: One cycle in the state estimation of a linear system.
Figure 2.18: Kalman filter operation [12]

2.3.2 Extended Kalman Filter (EKF

In practice the state space and/or the observation equation can become nonlinear. In these

cases the Kalman filter can not be applied since its closed expressions were obtained assuming

that state space model and the observation equations are linear. An example where extended

Kalman filter can be applied is the following: consider a tracking problem when the estimated

measurements are both the range R̂[n] = R[n] + wR[n] and the angle β̂ = β + wβ formed

32 Chapter 2. State Of Art

between the 2-D coordinates (rx[n], ry[n]) that must be found. The relationship between the

noisy measurements and the unknown parameters is shown in (2.30).

R̂(k + 1) =
√
r2
x(k + 1) + r2

y(k + 1) + wR(k + 1)

β̂(k + 1) = arctan
ry(k+1)
rx(k+1) + wβ(k + 1),

(2.26)

where rx(k+1) and ry(k+1) are directly related to the known velocity (vx(k+1), vy(k+1)), the

time interval transcribed between samples ∆ and the initial position (rx[0], ry[0]) of the mobile

target in the form of:

rx(k + 1) = vx(k + 1)∆ + rx[0]

ry(k + 1) = vy(k + 1)∆ + rx[0]

(2.27)

The equation (2.27) can be related to the first Gauss Markov process as:

rx(k + 1) = rx(k + 1 | k) + rx[0]

ry(k + 1) = ry(k + 1 | k) + rx[0]

(2.28)

Clearly it can be seen that the expression in (2.26) is nonlinear in range and bearing. Therefore

it cannot be expressed in the form of the following linear model as in the case of the Kalman

filter:

x(k + 1) = F(k)x(k) + G(k)u(k)

z(k + 1) = H(k + 1)x(k + 1) + w(k + 1)

(2.29)

Therefore the extended Kalman filter applies when the process/state model and/or observa-

tion/measurement model are nonlinear in the form of (2.30):

x(k + 1) = f(x(k)) + G(k)u(k)

z(k + 1) = h(x(k + 1)) + w(k + 1),

(2.30)

2.3. Introduction to tracking techniques for mobile nodes 33

being f a p-dimensional function and h an M-dimensional function. The dimensions of the

remaining matrices and vectors are the same as before. Again f(x[n−1]) represents the theoret-

ical model and h(x[n]) is the transformation operation from the predicted state to the predicted

measurement. Clearly MMSE cannot be applied directly because it applies to linear problems.

The used approach is to linearize both equations with the first-order Taylor expansion so that

the linearised state space model and the observation equation become linear:

x(k + 1) = F(k)x(k) + G(k)u(k) + (f(x̂(k | k))− F(k)x̂(k | k))

z(k + 1) = H(k + 1)x(k + 1) + w(k + 1) + (H(x̂(k + 1 | k))−H(k + 1)x(k + 1 | k)).

(2.31)

The new linearised equations in (2.31) differ from the original ones in (2.29) in that F is now

time varying and both equations have known terms added to them. Therefore the set prediction

and correction equations for the extended Kalman filter are described following [12]:

1. Prediction stage.

State Prediction:

x̂(k + 1 | k) = f [k, x̂(k | k), u(k)] (2.32)

State prediction covariance (p× p):

P(k + 1 | k) = F(k)P[k | k)F′(k) + Q(k) (2.33)

2. Correction stage:

Residual covariance (p×M):

S(k + 1) = R(k + 1) + H(k + 1)P(k + 1 | k)H(k + 1)′ (2.34)

Filter gain (p×M):

W(k + 1) = P(k + 1 | k)H(k + 1)′S(k + 1)−1 (2.35)

Updated state estimate:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + W(k + 1)(z(k + 1)− h[k + 1, x̂(k + 1 | k)]) (2.36)

Updated state covariance (p× p):

P(k + 1 | k + 1) = P(k + 1 | k)−W(k + 1)S(k + 1)W(k + 1)′ (2.37)

34 Chapter 2. State Of Art

being

F(k) = ∂f
∂x |x=x̂(k|k)

H(k + 1) = ∂h(k+1)
∂x |x=x̂(k+1|k)

(2.38)

Notice that in comparison with the Kalman filter the gain and covariance matrices must

be computed on-line as they depend upon the state estimates through F(k) and H[(k + 1).

Moreover the term MSE matrix is not the real one since an approximation has been realized.

To finish this section figure 2.19 offers a summary of the seen equations (2.32)-(2.37), the same

as the Kalman filter shown in figure 2.18.

An example of EKF applied to vehicle tracking can be found in section 13.8 of [13]. Appli-

cations of both KF and EKF for target tracking are shown in chapter 3 and some simulations

showing their behaviour for target tracking in a practical scenario can be shown in chapter 4.

2.4 Literature Review

This section is a collection of some of the works done by other entities which are related to

both cooperative positioning and tracking in wireless sensor networks. Then this section is

divided in three other sections: cooperative positioning, tracking and applications in WSN. The

applications section is a general overview of where WSN can be used.

2.4.1 Cooperative Positioning in Wireless Sensor Networks

The average location error is an important parameter for comparison between different localiza-

tion techniques or algorithms in the WSN localization field. The people in [51] present a home

application based on centralized WSN and they show measured location errors. In this paper

they discuss the design, implementation and evaluation of a RSS-based location determination

system. The implementation includes three components: the location determination system

which adapts and extends Motetrack [52] for in-home use, a location storage system (central-

ized architecture) that receive messages from the unknown nodes and a user interface to allow

home applications to get both current and historical. The anchor nodes are placed in known

positions and they send beacon messages periodically containing the power level in addition to

other parameters. The unknown node is moving randomly as it is carried by home residents.

The position computation is carried with two phases:

1. Initial data collection phase: at the deployment setup the mobile unknown sensor sends

2.4. Literature Review 35386 10 STATE ESTIMATION FOR NONLINEAR DYNAMIC SYSTEMS

Evolution
of the system

(true state)

Known input
(control or

sensor
motion)

Estimation State covariance
of the state computation

state at tk

x(k)

Input at tk ’ u(k)

Transition to tk+l

x(k + 1) =

fk x(k), 4k)l + v(k)

t
State prediction

2(k + Ilk) =

Measurement prediction

Z(k + l/k) =
h[k + 1, ii(k + Ilk)]

I

+

w(k + 1)
Measurement at i&+1

* z(k + 1) =

h[k + 1, x(k + I)] + w(k + 1)

Measurement residual

b v(k+l)=

z(k + 1) - i(k + l/k)

I

t
Filter gain

- W(k+l)=

P(k + llk)H(k + l)‘S(k + 1)-l

t
1r

+

Updated state estimate Updated state covariance

Z(k + l/k + 1) = P(k + ilk + 1) = P(k + Ilk)
i?(k + Ilk) + W(k + l)v(k + 1) - W(k + l)S(k + l)W(k + 1)’

Evaluation of Jacobians

F(k) = y
z=3i(klk)

ah(k + 1)
H(k + 1) = T

z:=?(k+llk)

Residual covariance
S(k + 1) = R(k + 1)

+H(k + l)P(k + l(k)H(k + 1)’

Figure 10.3.3-l: Flowchart of the EKF (one cycle).
Figure 2.19: Extended Kalman Filter operation [13]

36 Chapter 2. State Of Art

to the location storage system all the received beacon messages including the computed

RSSI values. All the beacon messages are recorded in a reference database which is used

in the the normal operation.

2. Normal operation: during this phase the anchor nodes send periodically beacon messages

in the same way as during the data collection phase. When mobile unknown sensors

receive beacon messages they find a match of the received beacons against entries in the

reference database. Then the node’s current location is calculated as the center of the of

the matching reference-points using the centroid approach explained in section 2.2.1.1.

The system uses Crossbow Mica2 and Mica2Dot sensors to provide 28th, 50th, 85th and 97th

percentile location errors of under 1, 1.5, 2 and 3 m, good for room level accuracy.

The work by [51] estimates the position of mobile unknown nodes with fixed anchors. There

are works based on range-free schemes that computes the location in a different way by means of

geometrical approaches. For example a proposed technique based on several mobile anchor nodes

is proved in [24]. Each anchor node moves inside the sensing field and broadcasts its current

position periodically. The location estimation algorithm is based on the geometry conjecture

(perpendicular bisector of a chord) [24]. What does this means? Consider that the transmission

range of an unknown node is a circle and the centre of the circle are the coordinates of the

unknown sensor node. Consider also that a mobile anchor node broadcasts its position in its

beacon messages every sampling time while it is moving randomly through the sensor field and

at time tk the mobile anchor enters to the coverage circle of the unknown node. The unknown

sensor stores in a database both the RSSI and position of the mobile anchor for each received

beacon. Then the unknown sensor uses the the coordinates A and B associated to the first

and last values of database in the circle in order to form a chord. Another point is needed in

the circle form another chord. The conjecture states that a perpendicular bisector of a chord

passes through the centre of the circle. If any two chords are obtained, the location of the sensor

node can be easily computed as follows. First the set of linear equations corresponding to the

perpendicular bisectors of each chord is formulated. The number of unknown is the same than

the number of equations. Then the Cramer’s rule is used to find the unknowns (x, y). Coming

back to the paper [24] they demonstrates that this range-free technique is able to achieve fine-

grained accuracy with an average location error of 0.74 m in a 100×100 m2 sensor field. Their

technique is robust against obstacles getting errors of 3.82 m in the average. Furthermore, this

technique is distributed because the computation is performed locally and also it is scalable.

Despite of the good accuracy provided by [24] their algorithm is not energy efficient as

being evaluated by [53]. It is said not energy efficient because the unknown sensor nodes are

continuously listening for beacon messages containing the locations of the mobile anchors when

only two beacons are needed. An energy efficient localization algorithm is more important than

2.4. Literature Review 37

an algorithm that requires more power consumption although the provided accuracy is greater.

In [53] is presented a range-based localization algorithm with the TDoA as a ranging metric

and an ultrasound signal to obtain the signal propagation time travelling at the light speed and

so the distance can be easily computed. Although the obtained accuracy is 0.82 m in a sensor

field with dimensions 500×500 m2 which is greater than the obtained by [24] their localization

algorithm based on the Newton iteration method is more energy efficient because only three

three anchor location points with a SNR higher than a specified threshold are recorded. By

simulation the energy consumption due to packet reception is always below 0.5 megajoules with

their proposed method whereas the energy consumption using the method in [24] is upper 1.75

megajoules, for any packet transmission interval.

The ranging metric used by [53] is more expensive than other cheaper ranging metrics such

as RSSI contributing to the deployment cost of the network. In other words each node would

need a TDoA external circuitry to compute the signal propagation time as well as an ultrasound

transmitter/receiver. Localization with RSSI is a very cheap solution because nodes are able to

measure the received signal strength which is related to the geometric distance from the anchor

nodes. Although RSSI values are quite random due to shadowing and multipath effects it is

possible to obtain better accuracy in good scenarios as demonstrated by [36]. They discuss and

analyse some RSSI-based techniques studying different factors (antenna orientation, transmit

power and frequency variation) that affect the measured RSSI values or the estimated distances.

For the experimental tests they develop a prototype based on BTnode sensor nodes that includes

the following components: a Bluetooth interface with a 433-915 MHz low power radio chip (5

dBm of transmission power) and the mobile robot system Robertino where one sensor node

is located at the top acting as an anchor node. They focus to examine the short range RSSI

deviations under standard conditions for indoor localization. The used ranging metric is the

RSSI and the localization procedure is based on multilateration. They obtain location errors of

0.80 m in the worst cases and 0.54 m in the best cases both using linear regression on the RSSI

data measured in an area of about 3.5×5.0 m2.

2.4.2 Tracking in Wireless Sensor Networks

The presented literature right now is a general perspective on the different positioning techniques

existent in WSN. A general case of positioning is tracking or navigation where the localization

computation of a mobile unknown node position is carried on in each sampling time. In this

case the unknown sensor node can move with a uniform motion, an acceleration motion or both

together. There are several practical or theoretical papers focused on tracking in WSN and they

are presented following.

At first a simulations based comprehensive studies comparing the performance of KF versus

38 Chapter 2. State Of Art

EKF for target tracking in WSN are carried on by [54]. The authors of this paper compare

the effectiveness, limitations and other related implementation issues in applying KF and EKF

for target tracking in WSN assuming that the system dynamic model and/or the observation

equation might be linear or nonlinear depending on the specific scenario. The work shown in the

paper puts in practice KF and EKF in different scenarios: 1) the state space model is nonlinear

and 2) nonlinear in the measurement equation taking into account that the observations can be of

one-dimensional (range or bearing are measured) or two-dimensional (range and bearing). Their

results show that the performance of EKF is poor in comparison with KF when the problem

is one-dimensional. Notice that for the comparison only distances from sensors-to-anchors are

used and multilateration is not performed.

There are other simpler techniques in addition to KF or EKF for localization and tracking.

For example, [55] develops an MSE algorithm as an ML(Maximum Likelihood) estimator for the

localization problem using the RSSI values (instead of the distances) measured by an unknown

node in a WSN. Their results show that the proposed MSE method outperforms the traditional

trilateration technique with a greatly improve on the accuracy of location estimation. Further-

more the paper shows that the accuracy for the outdoor environment is higher compared to

that in indoor because there is less variability in the RSSI. Their results show that a 52% of

the position estimates have an accuracy less than 1 m in a 40×40 m2 sensor field whereas for

the rest percentage the accuracy in the position estimates is up to 2 m. Finally they show that

their simple method based on the RSSI can be used effectively to track the movement of an

unknown node in a WSN by repeatedly running the MSE algorithm over a predefined period of

time. This scheme is fully distributed as each sensor node is able to track its location using the

received RSSI values from the other nodes.

The method proposed by [55] does not allow to obtain other target moving characteristics

such as velocity ,acceleration, turn rates, etc. Moreover every anchor node must send every sam-

pling time a signal to the target meaning that they must be active and consuming some energy

for transmission. The people in [14] develop another tracking method based on IMM(Interacting

Multiple Model) with the combination of the particle filtering algorithm for collaborative target

tracking. When the object enters in a monitored region only the nodes sensing the target become

active, form a cluster and choose that sensor to act as cluster head which RSSI from the target

is the largest. The tracking algorithm is performed at the cluster head. When the target goes

on moving, a new cluster and cluster head is formed dynamically with self-adaptation. They

compare three hypotheses by means of the RMSE: the uniform motion, the uniform accelera-

tion motion and the uniform motion together with the uniform acceleration motion. The best

obtained accuracy in terms of RMSE is 0.58 m in the uniform motion case when the nodes are

deployed uniformly in the sensor field whereas the worst accuracy is 1.35 m in the acceleration

uniform case and a random deployment. The measures are carried on in a 100×100 m2 sensor

field.

2.4. Literature Review 39

The conclusion obtained by [54] that EKF provides poor accuracy with one-dimensional

scenarios, when only distance can be measured is not true at all. In the other hand the complexity

of IMM is higher than the EKF due to IMM is a set of kalman filters. The accuracy obtained

by [14] have been improved by [10][56] using the EKF algorithm. The application in [10][56] is

the tracking of pallet jacks that are moving in a warehouse. In this paper the authors present

a technique to monitor the manual transportation processes of goods in a warehouse in order

to update the database automatically. Tracking of forklift trucks or pallet jacks equipped with

wireless sensor nodes is performed with nanLOC sensor nodes. To obtain range measurements

the used ranging metric is RToA. The initial state estimate is computed with trilateration as

the first observation and tracking is achieved with an EKF. Their experimental results show an

accuracy better than 0.40 m in both x and y coordinates in the 71% of the measurements in a

measuring field with the dimensions 9.48×3.25 m2. Some deviations about 1.38 m, 1.33 m are

obtained due to the blockage of the LOS.

The work shown by [57] is a simulation of the IMM for tracking maneuvering vehicles,

something which is quite related this master thesis. But instead of using EKF they prefer to

use UKF(Unscented Kalman Filter) for the turns because in accordance to their opinion EKF

has some drawbacks in nonlinear systems such as the approximation of a non-Gaussian density

by a Gaussian density. By simulations they show that UKF performance regarding the RMSE

of both the position and velocity is much less when using UKF than EKF. For the straight

trajectories a simple Kalman filter is used. However the complexity grade of UKF is greater

than EKF.

A design of the IMM for target tracking using both filters KF and EKF is given in chapter

3.

2.4.3 Applications using Wireless Sensor Networks

By now several applications that use WSN can be found in the literature. One interesting

application is the monitoring concentration of carbon dioxide (CO2) gas in areas of interest

within a VSN Vehicular Sensor Network) such as the proposed by [58]. In this work they

employ Zigbee-based Jennic motes connected to the available vehicle GPS. The sensors send

the CO2 record via short GSM messages to the FC integrated with GoogleMaps as a user

interface. This scenario is centralized but not cooperative since the application does not need

a cooperative strategy as all the sensor nodes have to send its sensing data to the FC. In the

other hand cooperative strategy is useful in localization/detection-oriented applications.

Another centralized application that uses WSN is the implementation of an intelligent car

park management system [59]. Their work consists to implement a software application to de-

tect and monitor the occupation of the parking slots using low-cost sensor nodes. The status of

40 Chapter 2. State Of Art

the parking lot is reported periodically to a database via the WSN and its gateway. Through a

management system it can guide/inform in an easy way the users to find a free parking slot in a

urban street network. They have implemented a prototype using: commercial MPR2400 cross-

bow motes with MTS310 sensor, a data acquisition board (equipped with light, temperature,

acoustic and a sounder sensor) and a MIB510 as an interface board acting as a gateway. As a

database they use PosgreSQL and as a WSN monitoring application they use MOTE-VIEW.

The network protocol adopted by the mote in their system is XMesh.

Chapter 3

System Design

The purpose of this chapter mainly based on [12] is to show the set of models used by the

algorithms KF and EKF for a target tracking application in a wireless sensor network. All the

content that appears in this chapter has been developed in Matlab code and integrated in a

global GUI Matlab simulator. This chapter deals to show the used models for both KF and

EKF which can be summarized below:

• A nearly constant velocity model for the uniform motion, implemented as a WNA (white

noise acceleration) model with low-process noise variance.

• A maneuvering model implemented as a nearly ”coordinated turn model” or known as

uniform acceleration motion.

The both words state and process which appear along this chapter refer to the

statespacemodel.

3.1 KF with the nearly constant velocity model

Consider the system with the following state vector:

x =


x

vx

y

vy


(3.1)

with vx and vy the velocities along the x and y dimension, which evolves according to

41

42 Chapter 3. System Design

x(k + 1) =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


x(k) +


T 2/2 0

T 0

0 T 2/2

0 T


u(k) n = 1, 2, . . . (3.2)

with a random initial condition x(0). The equation (3.2) represents a two-dimension uniform

motion with the state vector (3.1) sampled at time intervals T and a constant acceleration

noise u ∼ N (0, σ2
u). This random noise u is a zero mean white sequence with variance σ2

u that

models the small acceleration produced by external unavoidable factors such as wind change,

small variations in the car accelerator pedal, etc. Values of σ2
u in practical scenarios can be for

instance 0.1m/s2 or even 2m/s2 [12]. This acceleration noise u affects both the (x, y) positions

and (vx, vy) velocities which is formulated with the matrix on the right side. The right term in

(3.2) that is adding to the left term is called as process noise. It can be understood as follows.

Notice that (3.2) has the form of a first-order Markov process:

x(k + 1) = Fx(k) + G(k)u(k), (3.3)

where G(k)u(k) is the process noise with an appropriate covariance matrix Q which depends

on σ2
u being it a design parameter that must be known. The process noise covariance matrix Q

has the following form:

Q = G(k)σ2
uIG(k)′, (3.4)

where σ2
uI is the covariance matrix U of the acceleration noise vector u with the form shown

below:

U =

 σ2
u 0

0 σ2
u

 (3.5)

Section 4 deals with the simulation of Kalman Filters for different values of σ2
u.

Regarding the measurements they consist of the state’s position components corrupted by

additive noise:

z(k + 1) =

 1 0 0 0

0 0 1 0

x(k + 1) + w(k + 1) (3.6)

where the measurement noise is assumed zero-mean with variance σ2
w = 1. Also note that (3.6)

follows the same structure seen in section (2.3.1).

3.2. EKF with the Nearly coordinated turn model 43

The two noises v and w are mutually independent. Furthermore the filter is initialized ac-

cording to section 3.3 which explains how to initialize both the initial state vector and the initial

process covariance matrix.

3.2 EKF with the Nearly coordinated turn model

The turn of a target usually follows a pattern known as coordinated turn (CT) - characterized

by a constant turn rate and constant velocity magnitude. In practice the target velocity is not

constant at all due to some small deviations. Hence an external noise as the modeling error is

taken into account and thus resulting to the nearly coordinated turn model. The CT model is

necessarily a nonlinear system if the turn rate is not a known constant. Thus the vector denoted

in (3.1) is increased by one more component -the turn rate Ω- resulting the following augmented

state vector:

x = [x vx y vy Ω]′ (3.7)

the nearly coordinated turn model is then given by

x(k + 1) =



1 sinΩ(k)T
Ω(k) 0 −1−cosΩ(k)T

Ω(k) 0

0 cosΩ(k)T 0 −sinΩ(k)T 0

0 1−cosΩ(k)T
Ω(k) 1 sinΩ(k)T

Ω(k) 0

0 sinΩ(k)T 0 cosΩ(k)T 0

0 0 0 0 1


x(k) +



1
2T

2 0 0

T 0 0

0 1
2T

2 0

0 T 0

0 0 T


v(k) (3.8)

Note that the process noise v in (3.2) has different dimension from the one in (3.8). Furthermore

the last row of the matrix that is multiplying to x(k) means that the turn rate is constant during

the maneuver. Regarding the measurement equation it is similar to the one in (3.6) but with

an extra column for the turn rate

z(k + 1) =

 1 0 0 0 0

0 0 1 0 0

x(k + 1) + w(k + 1) (3.9)

where w is the measurement noise.

Since the model in (3.8) is nonlinear with Ω, the estimation of the state (3.7) will be done

with the EKF. In this case the system dynamic model has the form shown in (3.10).

44 Chapter 3. System Design

x(k + 1) = f(x(k)) + G(k)u(k) (3.10)

In this case the EKF transition function is f(x(k)). It is not the transition matrix as in the case

of the KF but it is a nonlinear function evaluated over the state vector x. This nonlinear function

is expanded into a first-order Taylor series. The first derivative denoted by FEKF(Jacobian of

f(x(k)) evaluated at the latest estimate of the state) is used in the on-line state covariance

computation.

FEKF(k) = [∇xf(x)′]′ |x=x̂(k)(k)=



1 sinΩ̂(k)T

Ω̂(k)
0 −1−cosΩ̂(k)T

Ω̂(k)
fΩ,1(k)

0 cosΩ̂(k)T 0 −sinΩ̂(k)T fΩ,2(k)

0 1−cosΩ̂(k)T

Ω̂(k)
1 sinΩ̂(k)T

Ω̂(k)
fΩ,3(k)

0 sinΩ̂(k)T 0 cosΩ̂(k)T fΩ,4(k)

0 0 0 0 1


(3.11)

being fΩ,1(k) the partial derivatives with respect to Ω which are calculated as shown in (3.12)


fΩ,1(k)

fΩ,2(k)

fΩ,3(k)

fΩ,4(k)


=



(cos Ω̂(k)T)T v̂x(k)

Ω̂(k)
− (sin Ω̂(k)T)v̂x(k)

Ω̂(k)2
− (sin Ω̂(k)T)T v̂y(k)

Ω̂(k)
− (−1+cosΩ̂(k)T)v̂y(k)

Ω̂(k)2

−(sin Ω̂(k)T)T v̂x(k)− (cos Ω̂(k)T)T v̂y(k)

(sinΩ̂(k)T)T v̂x(k)

Ω̂(k)
− (1−cos Ω̂(k)T)v̂y(k)

Ω̂(k)2
+

(cos Ω̂(k)T)T v̂y(k)

Ω̂(k)
− (sin Ω̂(k)T)v̂y(k)

Ω̂(k)2

(cos Ω̂(k)T)T v̂x(k)− (sin Ω̂(k)T)T v̂y(k)


(3.12)

Summarizing the state prediction and state prediction covariance in the EKF are

x̂[n | n− 1] = f(x̂[n− 1 | n− 1])

P[n | n− 1] = FEKF(k)P[n− 1 | n− 1]FEKF(k)′ + ΓCT (k)Q(k)ΓCT (k)′
(3.13)

Regarding the turn rate angle Ω̂, its initial value can be zero since a priori one does not know

if the target is turning and with which angular speed. Regarding the sign, the turn is to the

left if Ω̂ > 0 and to the right if Ω̂ < 0. The EKF filter is able to estimate Ω̂ from the received

measurements. Note that in the case when Ω̂ = 0 the form of FEKF given in (3.11) must be

replaced with the one shown in (3.14)

3.3. Initialization of State Estimators 45

FEKF(k) |Ω̂(k)=0
=



1 T 0 0 −1
2T

2v̂y(k)

0 1 0 0 −T v̂y(k)

0 0 1 T 1
2T

2v̂x(k)

0 0 0 1 T v̂x(k)

0 0 0 0 1


(3.14)

3.3 Initialization of State Estimators

The initialization of the discussed tracking algorithms is a key point in the estimator behaviour.

The initialization of state estimators covers basically two aspects:

1. Initialization of state vector: basically it refers to the initialization of x, vx, y, and, vy.

Usually it is better to initialize the estimator with the first measurements. Therefore with

T being the sampling interval and taking into account 2 successive measurements then the

following two dimensional positions and velocities can be initialized:

Two dimensions

[x0, y0] = [z[0], z[1]]

vx0 = z[0]−z[−1]
T

vy0 = z[1]−z[−2]
T

(3.15)

The equation (3.15) means that the initialization is based on the first two position mea-

surements z[0]andz[−1] for the x-dimension and z[1]andz[−2] for the y-dimension.

2. Initialization of state covariance matrix: Assuming that the measurement noise w ∼
N (0, r) with variance r then the covariance of the process is initialized as shown in (3.16).

Two dimensions

P[0 | 0] =


r r

T 0 0

r
T

2r
T 2 0 0

0 0 r r
T

0 0 r
T

2r
T 2


(3.16)

On the one hand notice that the dimensions of the process covariance matrix is 4×4. This

covariance must be extended to 5× 5 for the EKF with zeros at the last row and column

except that the element in the position (5, 5) is nonzero, but it is the variance of the turn

rate Ω. The initial value of the turn rate variance, σ2
Ω, is a design parameter that depends

46 Chapter 3. System Design

on the scenario. Usually low values are chosen. For the simulations carried on in the next

chapter σ2
Ω is initialized to 0.01.

On the other hand the initialization procedure is called two-point differencing and it guar-

antees consistency of the initialization of the filter.

3.4 The Interacting Multiple Model Estimator

The Interacting Multiple Model (IMM), brought forward by H.A.P.Blom in 1984 and widely

used in target tracking was built as one of the techniques (GPB1(Generic pseudo-Bayesian

estimator of first order) and GPB2 are two other techniques in the literature[12] that have the

follow approach) that allow to combine several filters such as those discusses previously (KF and

EKF) at the same time in one single algorithm. The use the IMM depends on the application

scenario, for example, the tracking of a target that is moving. The trajectory of the target can

be composed by straight stretchs and turns. In stretchs where the target goes straight on the

best to do is to apply a linear model since the error of the model will be small. However in the

turns, one approach is to consider a higher noise the model due to the real trajectory deviates

from the linear model with small noise. Another approach is to use models that have been

designed exclusively for the turns such as the CT(Coordinated Turn) model. Figure 3.1 shows

the main idea of the IMM functionality.

Figure 3.1: The IMM estimator as the combination with two filters [14].

In order to consider several filters at the same time, the IMM is able to quantify from the

received measurements the likelihood for each of the models at each sampling time. Hence

a higher weight will be given to the model with higher likelihood, i.e. the model that best

approximates to the reality. The IMM takes into account the model probabilities at each time

instant - i.e. each model is weighted and has a likelihood to be true. Thus the estimation given

by the IMM is a weighted mixture (a combination) between the produced estimations by all the

interacting models.

The structure of the IMM algorithm is

(Ne;Nf) = (r; r) (3.17)

where Ne is the number of estimates at the start of the cycle of the algorithm, Nf is the number

3.4. The Interacting Multiple Model Estimator 47

of filters in the algorithm and r corresponds with the number of models (or filters) taking into

account. Note that having r models is equivalent to having r filters as each filter is related with

one different model.

The full functionality of the IMM algorithm is shown in figure 3.2 and a description of each

stage is introduced following.

454 11 ADAPTIVE ESTIMATION AND MANEUVERING TARGETS

by a single Gaussian (details given later):

p[x(k)pqk), z”-q = ?N [z(k); E[2+)p!gk), *yk - 1p - l)], cov[*]]
i=l

= A+(k); 2 E [~(lc)Ik!--(k)& - ilk - l)] ,qj(k - ilk - l),cov[~]]
i=l

= A+(k); E[z(k)lM--(k), e gi(lc - lllc - l)p& - ilk - l)], cov[j]
i=l

(11.6.6-4)
The last line above follows from the linearity of the Kalman filter and amounts
to the following:

The input to the filter matched to model j is obtained from an interaction

of the T filters, which consists of the mixing of the estimates gi(i? - 1) k - 1)
with the weightings (probabilities) pilj (IC - 1 I k - l), called the mixing

probabilities.

The above is equivalent to hypothesis merging at the beginning of each
estimation cycle [Blom88]. More specifically, the r hypotheses, instead of
“fanning out” into r2 hypotheses (as in the GPB2 - see Fig. 11.6.5-l), are
“mixed” into a new set of T hypotheses as shown in Fig. 11.6.6-l. This is the
key feature that yields r hypotheses with T filters, rather than with r2 filters as
in the GPB2 algorithm.

?l(k - ilk - l), Pl(k - ilk - 1) Lt2(Ic - Ilk - l), P2(k - lllc - 1)

1 i

interaction/mixing
c

p(k - Ilk - 1)

+ 4
go’@ - Ilk - l), POl(k - ilk - 1) 202(k - l(k - l), P02(k - 1p - 1)

4 4

x(lc) 4-y *l(lc) x(lc) I’;‘1 R2(IC)

i? (klk), Pl(klk) 22(kIk), P2(kIk)

Mode probability
Al w update and

122 (k) I Pw9 9 (klk), Pl(klk)

mixing probability /J(k)
22(klk), P2(klk) and covariance wdk)

Wlk)
calculation P(k)

Figure 11.6.6-l: The IMM estimator (one cycle).

Figure 11.6.6-l describes this algorithm, which consists of r interacting
filters operating in parallel. The mixing is done at the input of the filters with

Figure 3.2: Interacting Multiple Model operation [12].

First the inputs of the IMM at each time interval (k) are the state vectors and covariance

matrices computed by each model at the previous time (k − 1). Thus x̂1 and P1 is the state

vector estimation and the process covariance matrix associated to the KF (the linear model).

Also x̂1 and P1 is the state vector estimation and the process covariance matrix associated

to the EKF (the CT model). Then three stages are carried on to produce an more accuracy

estimate:

1. Interaction/Mixing: this stage computes for each j = 1, . . . , r and for each time sample

(k− 1) the mixed estimates denoted by x̂0j(k− 1 | k− 1) and the mixed state covariance

matrix denoted by P0j from the previous filter output. Both the mixed estimates and the

mixed covariance matrix are computed with the mixing probabilities which are denoted by

µ(k − 1 | k − 1). These mixing probabilities are computed using the models transition

probabilities pij , the model probabilities µ(k − 1) and the normalizing constants c. On

the one hand pij is a matrix containing the probabilities of switching from one model

to another model; they are governed by a Markov chain as the one shown in figure 3.3.

Figure 3.3 shows two states (or two models) and the transition probabilities between states

(models) p12 and p21 as well as the probabilities to remain at the same state, p11 and p22.

On the other hand the vector µi(k − 1) is computed on-line using the likelihoods of each

model. In other words, the values obtained evaluating the received measurements vector to

48 Chapter 3. System Design

p12

p21

p11
p22

Model 1 Model 2

1

Figure 3.3: The IMM estimator with two filters [15].

the probability density function of each model are used to compute the mode probabilities.

2. Filtering: this stage deals with the execution in parallel of several filters that follows either

the same model with different process noise variance or different models. Every mixed

estimate x̂0j and mixed state covariance P0j computed in the previous stage is an input

parameter to one of the filters. The output of each filter are the state vector x̂j(k | k), the

state covariance Pj(k | k) and the model probability Λj(k)(the corresponding value of its

likelihood function for the received measurements vector z(k)).

3. Mode Probability update and mixing probability calculation: The mode probabilities as

well as the mixing probabilities are updated on-line. The mode probabilities µ(k − 1)

are calculated on-line evaluating the received measurements vector to the multi-variate

probability density functions of each model. The mode probabilities tell us the probability

that a model is more true than another. Therefore they can be seen as weighting factors.

4. State estimate and covariance combination: the output of all filters are combined using

the updated mode probabilities. In other words, the output of the IMM is a weighted

combination between the outputs of all the models. This combination is only for output

purposes, it is not part of the algorithm recursions.

The set of equations that involve each of the IMM stages are shown in the following section

3.4.1.

3.4.1 The algorithm

One recursion of the algorithm consists of the following:

1. Calculation of the mixing probabilities: (i, j = 1,, r). The probability that a

certain mode was used at time instant k − 1 given that current model Mj at time instant

k.

µi|j(k − 1 | k − 1) =
1

c̄j
pijµi(k − 1) i, j = 1, . . . , r (3.18)

3.4. The Interacting Multiple Model Estimator 49

where the normalizing constants are

c̄j =

r∑
i=1

pijµi(k − 1) j = 1, . . . , r (3.19)

2. Mixing (j = 1, . . . , r). Starting with x̂i(k − 1 | k − 1), one computes the mixed initial

state vector and state covariance for the filter matched to the current model Mj(k) as

x̂0j(k − 1 | k − 1) =

r∑
i=1

x̂i(k − 1 | k − 1)µi|j(k − 1 | k − 1) j = 1, . . . , r (3.20)

The mixed initial state covariance is computed as follows

P0j =
∑r

i=1 µi|j(k − 1 | k − 1)
{
Pi(k − 1 | k − 1)

+[x̂i(k − 1 | k − 1)− x̂0j(k − 1 | k − 1)]

·[x̂i(k − 1 | k − 1)− x̂0j(k − 1 | k − 1)]′
}

j = 1, . . . , r

(3.21)

3. Mode-matched filtering (j = 1, . . . , r). The estimates in (3.20) and (3.21) are used

as an input to the filter j. The likelihood functions corresponding to the r filters are

computed using both the mixed initial state vector and state covariance as

Λj(k) =
1

(2π)1/2|Sj |1/2
exp

(
−1

2
(z− zj)′(Sj)−1(z− zj

)
, (3.22)

where z are the position measurements, zj are the predicted measurements by each filter

and Sj are the innovance or residual covariances of each filter. The equation (3.22) says

that each filter has a pdf(probability density function) centred at its prediction ẑj with a

residual covariance Sj . The measurement z is evaluated for each pdf resulting a probability

of occurrence Λj(k) at the time sample k. As an example, if Λ1(k) > Λ2(k) means that

the predicted measurement ẑ by the model 1 (in our case would be the linear model) is

closer to the received measurement z. As a result a higher weight is given to the output

estimates from model 1.

4. Mode probability update (j = 1, . . . , r). This is calculated as follows:

µj(k) =
1

c
Λj(k)c̄j j = 1, . . . , r (3.23)

where c̄j is the expression from (3.19) and

50 Chapter 3. System Design

c =

r∑
j=1

Λj(k)c̄j (3.24)

is the normalization constant for (3.23).

5. Estimate and covariance combination The outputs of each filter are combined (mixed)

in accordance to the mixture equations (3.20) and (3.21) with the mode probabilities

factors.

x̂(k | k) =
r∑
j=1

x̂j(k | k)µj(k) (3.25)

P(k | k) =

r∑
j=1

µj(k)
{
Pj(k | j) + [x̂j(k | k)− x̂(k | k)][x̂j(k | k)− x̂(k | k)]′

}
(3.26)

3.4.2 Examples with the IMM Estimator

This section shows two configurations of the IMM estimator with a simple target route that is

composed by straight lines, left and right turns.

Configuration 1: A scenario of dimensions 160 m× 90 m and a constant velocity of v = 30

Km/h. The Kalman initial state vector is shown in (3.27) whereas for the Extended Kalman,

it is the same but with Ω = 0 at the end. The sampling time is T = 60 ms and the position

measurements have a standard deviation of σz = 1.5 m. The true track of the target is from the

left to the right. The turn left radius is 10 m (the target turns trough the perimeter of a circle

of radius 10 m) and the turn right radius is 2 m.

x0 =
[

20 0 30 0
]

(3.27)

In this configuration the following filters are used by the IMM-CT estimator (IMM-

Cordinated Turn)

1. One Kalman Filter with a constant velocity model with v = 30 Km/h and a low level noise

with standard deviation of σ2
u = 0.1 m/s2 that models the the uniform motion model.

2. An Extended Kalman Filter with a nearly coordinated turn model with the following

process acceleration noise covariance matrix:

3.4. The Interacting Multiple Model Estimator 51

V =


0.5 0 0

0 0.5 0

0 0 0.2

 (3.28)

where the elements in the diagonal are the process noise standard deviations for the linear

(0.5 m/s2) and turn (0.2rad/s2) portions of the state, respectively.

Furthermore the initial mode transition probability matrix πCT is

πCT =

 0.95 0.06

0.10 0.90

 (3.29)

The initial estimates are based on section 3.3; that is, the initial position estimate is the first

measured position and the initial velocity/turn rate is zero. The initial model probabilities are

set to

µ0 = [0.5 0.5]′ (3.30)

The results of the tracking as well as the true track can be seen in figure 3.4 shown below.

0 20 40 60 80 100 120 140 160
20

30

40

50

60

70

80

90

m

m

true track
noisy measurements
IMM−CT
KF
EKF

Figure 3.4: Comparison of KF, EKF and IMM-CT with σz = 1.5m. Configuration 1

52 Chapter 3. System Design

It can be seen that the estimations given by the IMM are between the KF and the EKF

estimations due to the IMM is a weighted combination between the KF and the EKF (the sum

of the weights or mode probabilities are 1). After the second turn, the IMM tends to the true

track much faster than the other two estimators. Table 3.1 provides a comparison between the

three estimators in terms of RMSE position error given the (RMSEz) position error, obtained

by multilateration.

RMSEz 1.8977 m

RMSEKF 4.6848 m

RMSEEKF 1.7979 m

RMSEIMM 1.91 m

Table 3.1: RMSE errors of the different tracking estimators

One can see that the performance of the IMM estimator is much better than the KF and

worst than EKF and multilateration. It is due to that the simulations are performed in quasi

ideal conditions, i.e. small measurements variance is considered. Next the performance will be

evaluated when noise higher, σz >> 1.5m. It will be seen that for higher noise variance then

EKF begins to fail but in contrast the IMM tries to follow the true trajectory of the target.

The turns are generated using the CT model. The number of samples in the turns depends

on the sampling time, the radius of the right bend and the velocity. As the turn to the right

has smaller radius than the turn to the left then only two samples are obtained with the chosen

parameters. As a result with only two samples in the right turn the performance of all estimators

are poor around this region due to the turn is quite sudden.

Figure 3.5 represents the EKF mode probability which is proportional to the EKF likelihood

at each sample. One can see the following:

• initially the EKF mode probability is 0.5 and it starts to decrease upto sample k−1 = 100.

• The only regions with a quasi-constant EKF mode probability between 0.3 − 0.4 are the

first and the last. In those regions the KF in the linear model has greater likelihood. It

is because the linear model fits better to the true trajectory which is straight (linear).

Remind that the sum of EKF and KF mode probabilities are 1.

• The higher EKF mode probabilities is due to that the EKF in the CT model is more

accurate than the KF in the linear model, thus providing higher likelihoods. The cases

where the EKF gives position estimates with more accuracy than the KF are in the turns.

Thus the two peaks corresponds to the left and right turns.

3.4. The Interacting Multiple Model Estimator 53

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Maneuvering mode probability for EKF

Figure 3.5: Maneuvering mode probability for the EKF. Configuration 1

Next the IMM is evaluated with a measurement noise higher, σz from 1.5m to 3m. The

results in 3.6(a) show that the EKF performance is bad after the second turn. In contrast the

IMM tracks more accurately the target. For instance, after the position (120m, 80m) the IMM

is tracking the trajectory within a position error less than 4m approximately whereas the KF

seems to track with a similar position error than the IMM after the position (140m, 80m). Table

3.2 shows the RMSE of all tracking algorithms. Notice that the error of IMM is the smallest

one.

0 20 40 60 80 100 120 140 160
20

30

40

50

60

70

80

90

100

m

m

true track
noisy measurements
IMM−CT
KF
EKF

(a) Tracking with EKF, KF and IMM:σz =

3m

0 50 100 150 200 250 300 350 400
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(b) Maneuvering mode probability for

EKF

Figure 3.6: Configuration 1. Comparison of KF,EKF and IMM with higher measurements

standard deviation in 3.6(a)(b) Maneuvering mode probability for EKF in 3.6(b)

54 Chapter 3. System Design

RMSEz 3.7986 m

RMSEKF 6.9962 m

RMSEEKF 7.1958 m

RMSEIMM 3.6734 m

Table 3.2: RMSE errors of the different tracking estimators

Following, another configuration taken from [12] is used to evaluate the tracking algorithms.

Configuration 2: The scenario area is of dimensions 30000 m× 15000 m and a constant

velocity v = 120m/s has been considered (note that this is for a typical ATC tracking applica-

tion). The interval between samples is T = 5 s. In the scenario under consideration, the initial

point at time t = 0 s where the state vector is initialized is at the position [25000m, 10000m].

The flight goes westward during the first 125 s. Then it performs a 1 ◦/s coordinated turn to the

left during 90 s. After the left turn the flight goes southward during 125 s. Then another 3 ◦/s

coordinated turn to the right is executed during 30 s and finally the flights flies westward again

with constant velocity. The position measurements have a standard deviation of σz = 100m.

The first turn corresponds to a radius of 6875.5m whereas the second turn corresponds to a

radius of 3600. This IMM configuration is referred to us as IMM-L since 2 linear state estimators

have been used (2 Kalman filters):

1. One Kalman Filter called KF-1 with a low level noise with a standard deviation of σ2
u =

0.1m/s2 m modelling the uniform motion model.

2. Another Kalman Filter called KF-2 with a higher level process noise (higher acceleration)

with a standard deviation of σ2
u = 2m/s2 modelling the turns. Taking into account an

certain error to the model will be useful to follow the turns since the motion model is

rectilinear.

The tracking of the flight trajectory with one IMM-L and 2 independent KF is shown in

figure 3.7(a). Again the maneuvering mode probability for model 2 associated to KF-2 can be

seen in 3.7(b).

A comparison of the performance between all tracking algorithms in terms of average position

error is given in table 3.3. One can see that the performance of IMM is the best in comparison

to the two independent Kalman filters. However multilateration performs better than IMM.

Furthermore KF-2 provides more accurate estimations than KF-1 since a higher process noise

is given to the model 2 to track the turns.

3.4. The Interacting Multiple Model Estimator 55

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

4

m

m

True track
Measurements

KF 1 with sigmau = 0.1 m/s2

KF 2 with sigmau = 2 m/s2

IMM−L with both KF

(a) Tracking with EKF, KF and IMM:σz =

100m

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maneuvering mode probability for model 2 with sigmau = 2 m/s2

(b) Maneuvering mode probability for

EKF

Figure 3.7: Configuration 2. (3.7(a)): Comparison of IMM-L with two single KF’s: one σ2
u =

0.1m/s2 and another with σ2
u = 2m/s2, (3.7(b)): Maneuvering mode probability for the model

2

RMSEz 10.1864 m

RMSEKF1 667.6266 m

RMSEKF2 93.0959 m

RMSEIMM 84.3506 m

Table 3.3: RMSE errors of the different tracking estimators used in the Configuration 2

The next chapter deals with the theoretical validation of the set of algorithms that are

explained in this chapter. For that a a simulator called ”Car Positioning Simulator” is developed

in Matlab.

Chapter 4

Matlab Tracking Simulator

In this chapter we present the simulator we have developed to validate the tracking algorithms.

First it is shown how multilateration is able to estimate the position of the target with a cer-

tain error around 2 or 3 m. Once the positioning technique is implemented, several tracking

algorithms are also developed in the simulator. This simulator, called ”Car Positioning Sim-

ulator” allows to provide a theoretical validation of the tracking techniques in a real scenario:

9 building blocks (3 vertical streets and 2 horizontal streets), several random target routes pre-

viously created and the application of KF, EKF and IMM over each of the routes. Furthermore

the simulator is designed with a GUI(Graphical User Interface) as a centralized application that

allows to perform several simulations for different input control parameters. It will be seen later

that these control parameters are: the s.t.d(standard deviation) of the measurements, the s.t.d

of the turn rate, the transition probability matrix, the initial model probabilities, the path loss

exponent, the target sampling and the variance of the shadowing.

This chapter deals with the following sections:

• Introducing the created Matlab GUI-based street simulator as centralized application and

give an explanation of this simulator.

• Showing several results for different routes and scenarios of the set of tracking estima-

tors analysed in the previous chapter. For example the performance of all the tracking

algorithms is analysed for different scenarios such as low-high shadowing noise, low-high

measurement errors The performance of the tracking estimators depends on their param-

eters (R,P, µ, σa) which can be adjusted in the GUI application for each scenario.

57

58 Chapter 4. System Design

4.1 Introduction to the Matlab GUI Simulator

Matlab© provides a useful utility to create graphical user interfaces. Graphical interfaces pro-

vides facility and comfort to interact with the global application allowing the possibility to

carry on several simulations for different values of the input control parameters. The Matlab

GUI design application used to built the simulator is shown in Figure 4.1.

Figure 4.1: ”Matlab GUI Design Application” based on Matlab©

The Matlab GUI utility is easy to use; it provides several graphic objects such as Textfields,

Buttons, radiobuttons and checkboxes. The final design of the application should be practical

and understood by the user. On the right side of the figure, one can see the input control

parameters of the application, whereas the output will be represented in the graphical axes and

the RMSE errors will be shown in the bottom of the figure.

The scenario is a set of streets with dimensions 20×48m2. The distance between the anchor

nodes or the sensor nodes located in each of the parkings slots is set to 4m. The anchor nodes

are represented by the symbol × in the simulations. The number of anchor nodes are 12 per

street side. The built application of the simulator is shown in figure 4.2.

4.1. Introduction to the Matlab GUI Simulator 59

Figure 4.2: ”Car Positioning Simulator” based on Matlab©

A description of the input parameters of the simulator is the following:

General Parameters:

• Sigma shad(dB): this parameter corresponds to the variance of the shadow fading, σ2
shad,

affecting the RSSI.

• ML standard deviation(m): this parameter corresponds to σz.

• Sensor Activation(sg): it corresponds to the sensor activation time Ta in seconds. By

default it is set to 5 s since initially it was a requirement.

• Target sampling(sg): it is the time T used to represent the vehicle positions.

• Sensor Groups: at the beginning of the project it was supposed that the activation time

of all parking sensors was 5 s. Due to the activation time was considered too high to obtain

enough position measurements for the tracking a new strategy was found. This strategy

consisted to have two groups of active sensors with a shift in the activation times. Thus

60 Chapter 4. System Design

more position measurements could be obtained for the same activation time. For example

an activation time of 5 s with one group of active sensors corresponds to one measurement

per street at the travel speed (all sensors active at the same time) whereas with two groups

of active sensors it doubles the number of measures (two position measurements per street).

This is shown in the simulations section.

• Real Path Loss Exponent: this parameter is the γRSSI taken into account for the

pathloss model to calculate the received power at a distance di from the transmitter, i.e.

RSSI = Pt − 10γrssilog10di being Pt the transmitted power in dBm.

• Estimated Path Loss Exponent: in practice γrssi is not known but an estimate γ̂rssi

is found. This parameter is taken into account because in practice the path loss exponent

estimated by the user, γ̂rssi from the RSSI can be different from the real one, γrssi.

• P0(dBm): it is the received power measure at 1m from the transmitter. By default

a measurement of the RSSI at a distance of 1m from the transmitter at the frequency

2.4GHz is −63.2 dBm. Although this value seems to be very small at this distance it has

sense because the sensor motes are not powerful and cannot transmit high power levels.

It is worth recalling that the sensor motes are energy constrained.

• Select route: routes are previously computed allowing then to be loaded on the simulator.

KF and EKF Parameters:

• KFsigma (m/s2): this parameter corresponds to σ2
u of the KF.

• EKFsigma1 (m/s2): this parameter corresponds to σ2
u of the EKF in the both dimensions

x and y corresponding to the elements (1, 1) and (2, 2) of the acceleration noise covariance

matrix U.

• EKFsigma2(◦/s2): it is the variance of the turn rate Ω, that is, the element (3, 3) of U.

IMM-CT Parameters:

• Models transition matrix: this matrix corresponds to πCT .

• Initial Modal Probabilities: initial µ0.

• Multilateration: if this option is set then multilateration is used to estimate the target

position.

• Weighted Average Power: this technique is used in the practical scenario shown in

chapter 5. It is another strategy to estimate the position of the target from the known

4.1. Introduction to the Matlab GUI Simulator 61

positions of the anchors and a set of weighting coefficients based on the received power from

the selected anchor nodes. The mathematical model of this technique is shown in section

5.2. As shown in the following chapter this strategy offers better results in a real scenario

where the estimate positions can be corrupted by high shadowing noise. In particular the

position is obtained as follows:

(x̂, ŷ) = A · α

α = RSSIn∑N
i=1 RSSIi

n = 1, · · ·N
(4.1)

being A2×N a matrix containing the (x, y) coordinates of N selected anchors with highest

RSSI. The α is a vector of dimensions N × 1 containing the weighting coefficients; every

anchor node has associated a certain weight which is dependent on the ratio between the

RSSI from a specific anchor and the sum of all the RSSIs from all the anchors (it is a

normalization of the received power).

• Generate video: this option gives to the user the possibility to generate and store locally

a Quicktime movie of the performed simulation.

• Run: this button starts the simulator

• View mode probabilities: this button allows the user to see the mode probabilities

computed by the IMM estimator.

A useful output parameter is the RMS between the actual target position and the estimated

one. It allows to compare numerically the performance of all the estimators in terms of average

position error.

Next we show a block diagram of the simulator.

4.1.1 Simulator block diagram

The block diagram of the simulator is shown in figure 4.3. It can be seen the set of matlab

scripts and the wirings between them.

The set of scripts are described as follows:

• TrackingApp.m: This is the Matlab GUI tracking application.

• TrackingIMMKFandEKF.m: This code implements the simulator, that is, when user click

over the button run that appears in the application. This function calls all the tracking

estimators. The inputs of this script are all the input parameters of the application.

62 Chapter 4. System Design

TrackingIMMKFandEKF.m

AnchorsDefinition.m

chooseTransitionMatrix.m

genKalmancoefsekf.m

TrackingApp.m

Multilateration.m

ExtendedKalman.m

Kalman.m

pos fun.m

immct.m
weightedAv.m

genKalmancoefskf.m

?

6
(pos target est,

AnchPos, drssi)(x̂, ŷ)

6

?
?

6

(R,P0j,H,U, Ta)

�

-
(x̂jk, P̂jk, x̂pred,

P̂pred,ΛKF)

(W,S,Ppred,Pupd)

-

�

?

6

?

6

�
-

6

?

-

�

6

6

?

6

(x̂0j, P̂0j,F,H,UKF,R, z, T)

-
(x̂

K
F
,P̂

K
F
,F

K
F
,H

U
K

F
,R

,z
,T

a
)

(x̂
u
p
d
K

F
,P̂

u
p
d
,x̂

p
r
e
d
,

P̂
p
r
e
d
,Λ

K
F
)

(W
,S

,P
p
r
e
d

P
u
p
d
)

(R
,P

0
j,

F

H
,U

,T
a
)

R
S
S
I N

x
1

α
N

x
1

?

(x̂
E
K

F
,P̂

E
K

F
,F

E
K

F
,H

U
E
K

F
,R

,z
,T

a
)

(x̂
u
p
d
E
K

F
,P̂

u
p
d
,x̂

p
r
e
d
,

P̂
p
r
e
d
,Λ

E
K

F
)

(Anchors Street,block vert,block horiz,

lengthStreet,distAnch,WidthStreet,start x)

AnchPos
(x

k
,A

n
ch

P
o
s,

A
n
ch

P
o
s,

P
0,

γ
r
s
s
i,

γ̂
r
s
s
i,

σ
2 s
h

a
d

N
,A

n
ch

or
s

S
tr

ee
t,

in
cr

os
si

n
g
,N

g
ro

u
p
,N

g
ro

u
p
s,

d
is

tA
n
ch

,M
u
lt

il
a
t)

�

?�

-

6

(x̂
k
,A

c
ti
v
e
A

n
ch

)

(µ
ij
,P̂

ij
,x̂

jk
,P̂

jk
,F

E
K

F

H
,U

E
K

F
,R

,x̂
k
,T

s
h

if
t
)

-

(x̂
c
,P̂

c
,x̂

jk
1
,P̂

jk
1
,µ

ij
k
1
)

?

(σ2
shad, σz, Tmotes, Ttarget, Groups, γrssi, γ̂rssi

P0, route, σ2
uKF , σ2

uEKF , σ2
Ω,pij, µij,Multilat, video)

-

� F

(xk,EKF, Tshift)

7

/

(x̂
0
j,

P̂
0
j,

F
,H

U
E
K

F
,R

,z
,T

a
)

(x̂jk, P̂jk, x̂pred,

P̂pred,ΛEKF)

1

Figure 4.3: Block diagram of the ”Car Positioning Simulator”.

• AnchorsDefinition.m: this script builds creates a matrix containing the 2-D coordinates of

all the anchors of the scenario taking into account the following input parameters:

– Anchors Street: The total number of Anchors per street. The number of anchors per

street is set to 24, corresponding to 24 parking slots (12 per street side).

– block vert, block horiz: the number of building blocks in the vertical and horizontal

domain. In the scenario block vert=3, and block horiz=4.

– lengthStreet: the length of the street is set to 48 m.

– distAnch: the distance between anchors is 4 m corresponding to one parking slot.

– WidthStreet: the width of the streets is set to 20 m.

– start x: this is the distance from either y = 0 or x = 0 where the parking slots starts.

• Multilateration.m: This code performs multilateration with N=4 anchor nodes with maxi-

mum RSSI. If the option weighted average is selected in the application, instead of applying

multilateration the weighted average method is used. The inputs/outputs of this script

are the following:

– xk: it is a vector containing the true positions of the target. This vector is used to

4.1. Introduction to the Matlab GUI Simulator 63

compute the real distances to the specified anchors in order to obtain the RSSIs using

the path loss model.

– AnchPos: it is a matrix containing the 2-D coordinates of those anchors that belong

to the street where the target is located. The second input AnchPos are all the

anchors and it is used to set which of them are active or not depending on Ngroups.

– P0: the RSSI at 1m.

– γRSSI : the real path loss exponent.

– γ̂RSSI : the estimated path loss exponent.

– σ2
shad: the variance of the shadowing.

– N : the number of used anchors to carry on multilateration.

– Anchors Street: it is described above.

– incrossing: it controls if the target is inside or outside the crossings. If the target is

inside , multilateration is performed with the active anchors located at the border of

the crossing.

– Ngroup: it controls which group of anchors is active at each time instant. This

variable will be always 1 if there is only one group of anchors.

– Ngroups: the number of existing groups of anchors. It is selected in the application

with the parameter Sensor Groups.

– distAnch: the distance between Anchors.

– Multilat: if the option multilateration is selected in the application then this variable

is set to 1.

– x̂k: it is an output vector that gives the position estimates of the target.

– ActiveAnch: it is an output matrix that contains the coordinates of the active

anchors. It is used to show the user in the axes of the application which anchors are

active.

• weightedAverage.m: This code generates the coefficients used in the weighted average

method to calculate the target position.

• posfun.m: It corresponds to the cost function C(x, y) appeared in 2.9. This cost function

is the euclidean distance from the target to each of the anchors. The function fminunc

from matlab optimization toolbox finds the values (x, y) that minimize C(x, y).

• Kalman.m: It implements the Kalman Filter. On the one hand, the inputs from

TrackingIMMKFandEKF.m are: the state vector x̂KF and the state covariance matrix

P̂KF at the previous time instant, the transition matrix F, the observation matrix H, the

acceleration noise covariance matrix of the process UKF, the measurement noise covariance

64 Chapter 4. System Design

matrix R, the position measurements z, and the sensor activation time Ta. The outputs

are: the updated state vector x̂updKF and state covariance matrix P̂upd, the predicted

state vector x̂pred and state covariance matrix P̂pred, and the likelihood probability ΛKF.

The last is used in the IMM. On the other hand, the inputs from IMM are the same than

the other set of inputs except: the mixed state vector x̂0j, the mixed state covariance ma-

trix P̂0j and the transition matrix F correspond to the first elements of a 1× 2 cell array.

A cell array can be used to store matrices of any dimension in each slot. The outputs can

be interpreted in the same way than in the other set of outputs.

• genKalmancoefskf.m: This script computes the Kalman coefficients from the state covari-

ance matrix P0j, measurement noise covariance matrix,the transition matrix, the obser-

vation matrix, acceleration noise covariance and the sensor activation time.

• ExtendedKalman.m: It implements the Extended Kalman Filter. The set of inputs and

outputs can be interpreted in the same way as in the Kalman Filter. Regarding the inputs

from IMM, the mixed state state vector, the mixed covariance matrix and the transition

matrix correspond to the second elements of the cell array.

• genKalmancoefsekf.m: This script computes the Extended Kalman coefficients in the same

way as in Kalman Filter except that the transition matrix is not passed as an input

parameter. In fact the Jacobian of the nonlinear function of the dynamic state is updated

online at each time step since it depends on the actual target turn rate Ω of the state

vector.

• chooseTransitionMatrix.m: This function chooses the transition matrix depending on Ω.

If Ω < threshold the used transition matrix corresponds to the uniform motion model

whereas if Ω > threshold the used transition matrix corresponds to the coordinated turn

model. This threshold is set to 10−12.

• immct.m: This code implements the IMM-CT tracking estimator. It requires the functions

Kalman.m, ExtendedKalman.m and chooseTransitionMatrix.m. The inputs of this script

are described next:

– µij: this vector corresponds to the prior model probabilities.

– P̂ij: it corresponds to the models transition matrix πCT.

– x̂jk, P̂jk: These parameters are a 1× 2 cell array containing the outputs of both KF

and EKF, x̂jk, P̂jk, at the previous time step. It is feedback.

– F,H,U,R: these parameters are described above.

– x̂k: the position estimates obtained with the script Multilateration.m.

– Tshift: it is the sensor activation time.

4.2. Tracking and Positioning Simulation 65

The outputs are:

– x̂c, P̂c: a 1 × 2 cell array containing the updated combined state vector and state

covariance from both filters.

– x̂jk1, P̂jk1: a 1× 2 cell array containing the updated state and covariance computed

by each of the filters.

– µjk1: the updated model probabilities at each time step.

Next we show the set of target routes used in the simulations.

4.1.2 Target Routes

The target routes allows to load one of the seven target roads stored locally. For instance, three

target routes are shown in figures 4.4(a) 4.4(b) and 4.4(c). All routes have both left and turn

rights. The following section use these true target routes to apply positioning techniques and

the tracking estimators.

4.2 Tracking and Positioning Simulation

This section is devoted to test the estimators described in the previous chapter for different

scenarios. The main idea is to show how the performance of the positioning and tracking

techniques vary by modifying the input parameters of the simulator. First, the three target

routes are tracked by using the following default values for the input parameters:

General Parameters:

• Sigma shad(dB): 2 dB

• ML standard deviation(dB): 3m

• Sensor Activation (s): 5 s

• Target sampling (s): 0.5 s

• Sensor Groups: 1

• Power Path Loss Exponent: 2

• Distance Path Loss Exponent: 2

• P0(dBm): -63.2

66 Chapter 4. System Design

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Reference Anchor Nodes
True track

(a) Route 1

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Reference Anchor Nodes
True track

(b) Route 2

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Reference Anchor Nodes
True track

(c) Route 5

Figure 4.4: Target routes definition.

KF, EKF and IMM Parameters:

• KFsigma (m/s2): 0.1

• EKFsigma1 (m/s2): 0.5

• EKFsigma2(◦/s2): 0.2

• Models transition matrix:

πCT =

 0.95 0.05

0.10 0.90

 (4.2)

4.2. Tracking and Positioning Simulation 67

• Initial Modal Probabilities:

µ0 = [0.5 0.5] (4.3)

Multilateration: on

Case 1. Modifying Ngroups The results for the defined default input parameters are

shown respectively in figures 4.5(a), 4.5(b) and 4.5(c) for the three target routes. The corre-

sponding RMSE errors of all the estimators for the different routes are shown in table 4.1. On

the one hand it can be seen that the number of total measurements is not enough to have efficient

tracking since the estimators converge with a high number of measurements. It is due to the

high sensor activation time for a target speed of 30Km/h = 8.33m/s meaning approximately

one position measure per street every 5 s (the length of one street is 48m). The sensor activation

time comes from a requirement of the company. In order to have more position measurements,

two groups of sensors were considered with a delay Tshift in the activation time. For example

two groups of active sensors imply that Tshift = Ta/Ngroups. For the case of Ngroups = 2

then Tshift = 2.5 s meaning that the computation of multilateration is done every 2.5 s. As a

result the double of the position measurements with one group is obtained as shown in figures

4.6(a), 4.6(b) and 4.6(c) with the corresponding RMSE errors shown in table 4.2.

On the other hand it can be seen that the performance of IMM is the best one in comparison

to KF and EKF, since it provides the smallest RMSE for any route giving an average difference

less than 70 cm with respect to the multilateration. Moreover the EKF performance is better

than the KF performance in most of the situations when both values RMSEEKF and RMSEKF
are compared. It is because EKF behaves as a KF when the turn rate is zero as demonstrated

by (3.14).

The number of output estimates from all the tracking estimators is the same than the number

of multilateration position estimates. In order to show the estimated trajectory of the target, all

the points are connected with lines (it would be better to have a lot of continuous measurements

but in practice it is impossible due to sensors energy constraints).

Route 1 Route 2 Route 3

RMSEz(m) 2.3228 2.0484 1.9477

RMSEKF(m) 2.5209 3.7951 2.9892

RMSEEKF(m) 2.557 2.8116 2.3482

RMSEIMM(m) 2.2746 2.7016 2.2618

Table 4.1: RMSE errors associated to the results in figures 4.5(a), 4.5(b) and 4.5(c).

68 Chapter 4. System Design

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.5: Simulation of tracking algorithms for different target routes and the default param-

eters.

Route 1 Route 2 Route 3

RMSEz(m) 1.6941 2.0311 1.8244

RMSEKF(m) 3.279 4.5699 4.7661

RMSEEKF(m) 2.9703 4.3902 2.9681

RMSEIMM(m) 1.8449 2.4737 2.1897

Table 4.2: RMSE errors associated to the results in figures 4.6(a), 4.6(b) and 4.6(c).

4.2. Tracking and Positioning Simulation 69

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.6: Tracking simulation with Ngroups= 2 and Ta = 5 s.

Therefore from now on the simulations will be done with 2 groups of sensors, lay adopting

an activation time of Tmotes = 5 s and an activation shift time of Tshift = 2.5 s. The target

sampling will be set to Ttarget = 0.5 s.

Case 2. Impact of σ2
shad variation: How the parameter σ2

shad have an influence on the

position estimates?. This parameter is related to the received power and it accounts for the

shadowing in wireless channels. The shadowing effect is modelled as a lognormal with mean 0

and variance σ2
shad. For example if σ2

shad = 0 means that the received power is only dependent

on the distance and as a result the computed position measurements with multilateration are

exactly the true target position as shown in figure 4.7. However the tracking estimators still

gives bad estimations, due to the dependency on the std of the position measurements. It will

be seen in figures 4.9(a), 4.9(b) and 4.9(c) that when considering σz = 0 then all tracking

70 Chapter 4. System Design

estimators estimate the same true track and therefore the RMSE errors shown in table 4.5 will

be zero. It is worth recalling that the target position estimates are found with those four anchor

nodes with higher received power. The results where σ2
shad = 0 are shown in figure 4.7 with the

corresponding RMSE errors in table 4.3. One can see in table 4.3 that RMSEz(m) is almost

negligible (not zero because it comes from estimates) for all routes since the shadowing noise is

set to a zero value.

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.7: Tracking simulation with σ2
shad = 0 dB.

Increasing the value of σ2
shad = 0 to σ2

shad = 30 dB, for instance, will affect the position

measurements. The results are shown in figure 4.8 with the RMSE errors shown in table 4.5.

On the one hand one can see that the RMSE errors are greater than in previous simulations.

On the other hand the performance of KF is better than IMM and EKF for the case of route

1 and route 3 whereas the IMM performance is the best in route 2. Depending on the scenario

4.2. Tracking and Positioning Simulation 71

Route 1 Route 2 Route 3

RMSEz(m) 7.477e-05 0.00014688 0.00011769

RMSEKF(m) 2.67 5.2307 4.1509

RMSEEKF(m) 2.8468 2.4598 2.0838

RMSEIMM(m) 0.78805 1.4721 1.1043

Table 4.3: RMSE errors associated to the results in figures 4.7(a), 4.7(b) and 4.7(c).

under consideration the KF can be more accurate than IMM as happen in route 1 and route 3.

However this kind of scenarios cannot occur because if high shadowing noise is considered also

the variance of the position estimates must be higher.

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.8: Tracking simulation with σshad = 30 dB.

72 Chapter 4. System Design

Route 1 Route 2 Route 3

RMSEz(m) 8.8954 9.0811 9.1854

RMSEKF(m) 7.3217 9.7178 6.9007

RMSEEKF(m) 9.7907 10.46 10.3231

RMSEIMM(m) 8.5713 8.7038 8.9004

Table 4.4: RMSE errors associated to the results in figures 4.8(a), 4.8(b) and 4.8(c).

The values σ2
shad and σz are somehow related. In other words σz must be fitted to σ2

shad as

σz is a design parameter. For instance, if σ2
z = 0 it is clear that σshad must be zero (because the

position estimates do not have any variance) and therefore the position measurements obtained

by multilateration and the position estimations obtained by the tracking methods are the same

as shown in 4.9 with the RMSE errors in table 4.5.

Route 1 Route 2 Route 3

RMSEz(m) 0 0 0

RMSEKF(m) 0 0 0

RMSEEKF(m) 0 0 0

RMSEIMM(m) 0 0 0

Table 4.5: RMSE errors associated to the results in figures 4.9(a), 4.9(b) and 4.9(c).

Increasing σ2
z deals with an increase of σ2

shad. The value of σz to be considered must reflect

to the reality with σ2
shad. In other words, in practice we have that the RSSI is dependent on

σ2
shad. But if we do not know σ2

shad because perhaps we do not have enough measurements to

obtain the wireless channel statistics, then we should adjust the value of σz to fit the estimation

positions with the true positions. It is worth recalling that multilateration is dependent on

|sigmashad and the tracking is dependent on both z and σ2
z in the simulations.

Case 3. σz dependency: Here we show how the values of σz have an influence on the

position estimations obtained by KF, EKF and IMM. Figure 4.10 shows the tracking for σz =

30m and σ2
shad = 2 dB with the associated RMSE values in table 4.6 and figure 4.11 are the

results for the tracking with σz = 30m and σ2
shad = 30 dB with the corresponding RMSE values

shown in table 4.7.

Considering for instance the values σz = 30m and σ2
shad = 2 dB has no sense. It is because

a small deviation on the RSSI due to the shadowing effect (the RSSI variation range is RSSI ±

4.2. Tracking and Positioning Simulation 73

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.9: Tracking simulation with σ2
shad = 0 dB and σz = 0m.

Route 1 Route 2 Route 3

RMSEz(m) 2.2024 2.1854 1.8432

RMSEKF(m) 24.2831 8.1546 25.4734

RMSEEKF(m) 4.7209 10.5379 11.4415

RMSEIMM(m) 8.0575 6.4664 9.3138

Table 4.6: RMSE errors associated to the results in figures 4.10(a), 4.10(b) and 4.10(c).

3σshad) corresponds to a small variation on the distance between the receiver and the transmitter.

For instance, consider the following RSSI mean value Pr1 = −72.7424 dBm from the path loss

74 Chapter 4. System Design

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.10: Tracking simulation with σ2
shad = 2 dB and σz = 30m.

model with P0 = −63.2 dBm, γrssi = 2 and d = 3m. The maximum RSSI value assuming

σ2
shad = 2 dB is Pr2 = Pr1− 3σshad = −76.9851 dBm which corresponds to a maximum distance

deviation of d2 = 4.8894m. Hence a value of σz = d2 − d ≈ 2m could be more appropriated

instead of σz = 30m. Although it has no sense to choose the values σz = 30m and σ2
shad = 2 dB

the set of simulations in figure 4.10 are shown in order to demonstrate that the behaviour of the

algorithms depend on:

1. Position measurements z obtained by a position technique like Multilateration. If the

position measurements have large errors it also leads large errors in the outputs of the

tracking techniques.

2. Measurement noise covariance R related to σz.

4.2. Tracking and Positioning Simulation 75

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.11: Tracking simulation with σ2
shad = 30 dB and σz = 30m.

Route 1 Route 2 Route 3

RMSEz(m) 10.4049 7.2654 7.4966

RMSEKF(m) 24.5122 10.5017 23.6941

RMSEEKF(m) 11.55577 11.8478 14.4254

RMSEIMM(m) 9.9302 9.0447 9.3391

Table 4.7: RMSE errors associated to the results in figures 4.11(a), 4.11(b) and 4.11(c).

The results shown in figure 4.11 show that for larger error in the position measurements

larger errors appear in the position estimates obtained by the tracking algorithms. Re-call that

76 Chapter 4. System Design

σ2
shad and σz are related. Figure 4.11 with its corresponding RMSE errors in table 4.7 also

shows that the behaviour of IMM-CT in terms of RMSE is the best in comparison with both

KF and EKF. In cases when the shadowing noise can be high -i.e. the deviation of the position

estimates is also high- it is necessary to adjust the process noise covariance matrix Q to achieve

a good performance of the tracking estimators. Next we demonstrate the dependency of the

tracking estimators under U (Q is directly proportional to U).

Case 4. UKF and UEKF adaptation: On the one hand, when having larger position er-

rors it is necessary to find those values for the acceleration noise covariance U that allow the

tracking algorithms to adapt to the measurements and thus minimizing the RMSE. On the

other hand R is not a design parameter since it is related to the measurement noise. It is worth

recalling that the values of its diagonal are σz in m.

Therefore values to be chosen will be those that the algorithm performance in the noisy

environment satisfies the designer. For example, with the following values for UKF and UEKF

instead of the default ones:

UKF =

 4 0

0 4

 UEKF =


6 0 0

0 6 0

0 0 3

 (4.4)

the achieved RMSE errors shown in table 4.8 which corresponds to the simulations shown

in figure 4.12 are much less than the ones seen in table 4.7 for the previous simulations in

figure 4.11. As a result we can see that the chosen values in (4.4) are more suitable than the

default ones when the noise is high. It is important to keep in mind that the performance of

the tracking algorithms depends on U or σu. For example, if KF is used to follow a uniform

motion model, increasing UKF makes that the belief of the model decreases (believing more with

the measurements) and viceversa decreasing UKF means that the belief of the model increases.

Figure 4.13 are the simulation results with the same values than the used in the simulations

seen in figure fig:figure410 but with UEKF = 0 (all values in its diagonal are zero). One can

see in figures 4.13(a) and 4.13(c) that the EKF tendency is to follow a nearly coordinated turn

model, i.e. EKF deviates from the target trajectory. In figure 4.13(a) the KF provides better

position estimations than EKF, achieving smaller RMSE errors as shown in the first columns

of table 4.9. However as shown in table 4.9 corresponding to figure 4.13(c) the EKF achieves

smaller RMSE errors than KF although the EKF track seems to be worst than the KF track.

Hence a conclusion is that the performance of the tracking estimators is also dependent on the

scenario under consideration; in this case the routes are different. For example, in figure 4.13(b)

the EKF track is more ore less similar to the KF track, i.e. the EKF track does not deviates.

4.2. Tracking and Positioning Simulation 77

Concerning the IMM-CT performance it gets worst in comparison with respect to the results

in the previous simulations in figure 4.11. This can be seen when comparing the achieved RMSE

errors. The reason of that is because IMM-CT depends on the performance of of the combined

filters. Thus if one of the filters gets worse then the IMM performance deteriorates. Increasing

σ2
u = 0.8m/s2, then the EKF performance improves implying also the IMM-CT performance as

shown in figure 4.14 or numerically with the RMSE errors shown in table 4.10. One can see

that the average positions errors of both KF and IMM-CT decreases significantly.

It is important to keep in mind that the way of finding suitable values of UKF,EKF is by

means of trial and error, there is no numerical way to find the optimum values of UKF,EKF that

achieve the minimum average position error. If one needs to apply the tracking algorithms in a

real scenario the variance of the acceleration should be obtained by measurements or by means

of trial and error through several campaign measurements. For example, a KF filter was used

to track a car in a real scenario as detailed in chapter 5 and several campaign measurements

were carried on to find the appropriate value of the acceleration noise variance.

Route 1 Route 2 Route 3

RMSEz(m) 9.0489 6.4985 7.578

RMSEKF(m) 7.6325 8.69 6.3738

RMSEEKF(m) 11.3928 9.8031 7.8065

RMSEIMM(m) 7.2899 8.1902 6.2253

Table 4.8: RMSE errors associated to the results in figures 4.12(a), 4.12(b) and 4.12(c).

Route 1 Route 2 Route 3

RMSEz(m) 7.8532 7.1251 7.2047

RMSEKF(m) 24.1103 10.2743 24.3379

RMSEEKF(m) 31.2504 10.2306 17.501

RMSEIMM(m) 24.959 10.0513 20.0396

Table 4.9: RMSE errors associated to the results in figures 4.13(a), 4.13(b) and 4.13(c).

Case 5. Adaptation of IMM-CT Parameters: The purpose of this simulation case is

to deal with the IMM-CT performance, taking into account the following parameters:

1. the transition probability matrix πCT: the Markov chain (or state machine) transition

probabilities between different states (models) and the probabilities to remain at the same

78 Chapter 4. System Design

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.12: Tracking simulation with σ2
shad = 30 dB, σz = 30m and the process covariance

matrices (4.4)

Route 1 Route 2 Route 3

RMSEz(m) 8.0485 9.6884 7.4144

RMSEKF(m) 25.2994 11.6391 26.1548

RMSEEKF(m) 11.4893 9.8404 9.5091

RMSEIMM(m) 13.6132 10.6801 13.4004

Table 4.10: RMSE errors associated to the results in figures 4.14(a), 4.14(b) and 4.14(c).

4.2. Tracking and Positioning Simulation 79

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.13: Tracking simulation with σ2
shad = 30 dB, σz = 30m, QKF =[0.1 0;0 0.1] and

QEKF = 0

state.

2. the model probabilities µ: the certainty probability of a model.

With respect to 1 we want to demonstrate that the performance of IMM is not dependent on

πCT as commented by [12]. For that suppose we choose the following transition matrix as the

transpose of the used right now. We choose these values to represent the opposite case of the

previous cases, i.e. the probability to go to model 2 from model 1 was 0.05 and now will be

0.10 whereas the probability to go to model 1 from model 2 was 0.10 and now will be 0.05. It

does not matter what other values we choose since we will demonstrate that IMM efficiency is

independent with the Markov chain probability matrix.

80 Chapter 4. System Design

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.14: Tracking simulation with σ2
shad = 30 dB, σz = 30m, QKF =[0.1 0;0 0.1] and

QEKF =[0.8 0 0;0 0.8 0;0 0 0]

πCT = π′CT =

 0.95 0.10

0.05 0.90

 (4.5)

Introducing the values of (4.5) into the simulator and keeping the other input parameters to

their default values gives the results shown in figure 4.15 with the corresponding RMSE errors

in table 4.11. One can see that the results are similar as in figure 4.6 in the order of few cm

(not equal because the output of the filters are estimates). One can see that the RMSE errors

of the IMM are also similar comparing table 4.11 and table 4.2.

4.2. Tracking and Positioning Simulation 81

The idea to keep the rest of the input parameters to the default values is to avoid the errors

induced by high noise in the positions measurements that could make difficult the analysis of

IMM estimator when varying its parameters.

(a) Route 1 (b) Route 2

(c) Route 5

Figure 4.15: Tracking simulation with the default parameters, Ngroups= 2 and the chosen mode

transition matrix in (4.5)

.

Regarding the model probabilities they represent the initial certainty probabilities p1 and p2

of the model 1 and the model 2 respectively (note that p1 + p2 = 1). Next we vary the model

probabilities assuming initially that the target moves according to a uniform motion model with

a probability of 70% whereas in the rest 30% the target will perform some turns, i.e. the target

follows a nearly coordinated turn model. The IMM needs to have an initialization of the model

probabilities and in practice the route of a target is unknown. We will show that the performance

of IMM with µCT does not vary significantly with the model probabilities since IMM adapts the

model probabilities at each time instant k with the received measurements (with the likelihoods)

82 Chapter 4. System Design

Route 1 Route 2 Route 3

RMSEz(m) 2.5884 1.9522 2.0751

RMSEKF(m) 4.4747 5.1048 4.6308

RMSEEKF(m) 3.9542 2.6499 3.0477

RMSEIMM(m) 2.9012 2.4021 2.3864

Table 4.11: RMSE errors associated to the results in figures 4.15(a), 4.15(b) and 4.15(c).

as demonstrated by (3.23).

µCT =
[

0.7 0.3
]

(4.6)

The results can be seen at the bottom of the figure 4.16. It compares the EKF model

probabilities estimated by IMM between the default model probability and the newest one. These

model probabilities corresponds to the route 1 with the same parameters as in the simulation

shown in figure 4.6.

(a) EKF mode probabilities with the default

mode probabilities: 0.5

(b) EKF mode probabilities with the new

mode probability: 0.3

Figure 4.16: EKF Mode probabilities comparison between the original and the one shown in

(4.6)

.

One can see that there the difference is almost small. Furthermore these results are similar

to the ones shown in figure 3.7. It can be seen that the initial EKF mode probability of figure

4.16(b) is the one shown in the second column of (4.6). Then the model probabilities decreases

upto the first peak. It is because the model probability of the KF increses, .i.e. the the uniform

4.2. Tracking and Positioning Simulation 83

motion model followed by the KF is more certain than the nearly coordinated turn model

followed by the EKF. It has sense since the target is moving eastwards upto the third crossing.

Then the target performs a coordinated turn to the left and the EKF mode probability increases

since the CT model is more certain than the uniform motion model. Then the target moves

northwards upto the next crossing which performs again another coordinated turn to the left.

It corresponds to the second peak. After the second turn the target moves westwards following

a uniform motion resulting in a decrease of the EKF mode probability (or the EKF likelihood)

and an increase of the KF mode probability (or the KF likelihood). The likelihood gives the

probability that the position estimated by each tracking filter be certain. Thus if a filter has a

likelihood greater it means that its estimates are close to the true positions.

Case 6. γRSSI and γ̂RSSI discrepancy: At this point we know that the estimation of the

target position is found by means of a position technique that takes into account the distances

to several anchor nodes. These distances are found using using both the RSSI which is related

to the path loss model as shown in (4.7):

RSSI = P0 − 10γRSSI log10dt−r − v, (4.7)

where dt−r is the distance between the transmitter and the receiver and v is a lognormal variable

modelling the shadowing noise. On the one hand, the problem of estimating the distances is that

the user needs to know the corresponding value of γ̂RSSI associated to the each RSSI. In other

words an estimate γ̂RSSI is needed since the real one is unknown. On the other hand it is quite

difficult to obtain this value since the scenario is randomly changing every time. Also it might

exist different γRSSI,N for each of the wireless links between every anchor and the receiver.

The simulator allows the possibility to realize simulations modifying both γ̂RSSI and γRSSI

with the parameters ”Real Path Loss Exponent” and ”Estimated Path Loss Exponent”. We

will show an example when the path loss exponent associated to the RSSI and the path loss

exponent used to estimate the distances are different, i.e. γRSSI 6= γ̂RSSI . For that we consider

only two routes, the same input control parameters than in figure 4.6 except the Estimated

Path Loss Exponent that will be set for instance to 3. The results are shown respectively in

figures 4.17 and 4.18 with their corresponding RMSE errors shown in table 4.12.

It can be seen that a discrepancy between the real path loss exponent and the estimated path

loss exponent implies an increase of the average position errors as seen in table 4.12. Moreover

notice that the noise introduced to the system is very small compared in a real scenario. It

means that in practice large position errors can be due to this discrepancy in addition to other

factors such as the shadow fading, multipath and interference. Furthermore larger errors would

be obtained if for instance different real path loss are different for each wireless link. Thus the

user should have a vector γ̂RSSI complicating then the computation of the estimated position.

Although the simulator does not take into account this effect the idea was to demonstrate what

happens when both γ̂RSSI and γRSSI differs.

84 Chapter 4. System Design

(a) Route 1: Positioning with γ̂RSSI = γRSSI =

2

(b) Route 1: Positioning with γ̂RSSI =

3, γRSSI = 2

Figure 4.17: Route 1. Comparison between equal and different values of γ̂RSSI and γRSSI

.

(a) Route 3: Positioning with γ̂RSSI = γRSSI =

2

(b) Route 3: Positioning with γ̂RSSI =

3, γRSSI = 2

Figure 4.18: Route 3. Comparison between equal and different values of γ̂RSSI and γRSSI

.

4.3 Summary

This chapter can be summarized as follows:

• A matlab simulator has been developed to test and validate both the positioning techniques

and the set of tracking filters described in chapter 3.

• Several cases or scenarios have been proved in order to test the performance of the set of

algorithms, specially the IMM-CT algoritm. The following main cases have been consid-

4.3. Summary 85

γRSSI = 2, γ̂RSSI = 2 γRSSI = 2, γ̂RSSI = 3

Route 1 Route 3 Route 1 Route 3

RMSEz(m) 2.2707 2.0799 7.2486 6.7783

RMSEKF(m) 3.2633 4.3874 7.2161 6.6786

RMSEEKF(m) 3.5648 4.0344 7.4151 8.0672

RMSEIMM(m) 2.4772 2.5037 6.8469 6.6414

Table 4.12: Comparison of the positioning between equal and different values of γRSSI and

γ̂RSSI for both Route 1 and Route 3.

ered:

– Case2: Impact of σshad variation: study the performance of the system when the

noise of the received power varies.

– Case3: σz dependency: study the performance of the system for different standard

deviation of the position measurements.

– Case4: Adaptation of UKF and UEKF : analysing the efficiency of the set of tracking

filters taking into account the dependency on the acceleration noise covariance (the

variance of the process acceleration noise).

– Case5: Adaptation of IMM-CT parameters: Validation of the performance of the

IMM algorithm depending on the IMM-CT parameters: πCT and µCT.

– Case6: γRSSI and γ̂RSSI discrepancy: Study the performance of Multilateration when

the real and the estimated path loss exponents differs.

• It is demonstrated that IMM is the best tracking solution because it provides the smallest

RMSE in most of the cases. It does not mean that IMM is always the best. Its performance

is dependent on both the scenario and the performance of each filter. For example, IMM

performance is dependent on the both KF and EKF performances. In conclusion IMM is

a novel solution for tracking targets because it evaluates the measurement over different

filters and gives a high likelihood to the one that most matches to the true positions.

• The case6 is considered because that effect is quite common in practice. It demonstrates

that the average position error increases significantly assuming low shadowing noise. Hence

it demonstrates that multilateration performance is very bad in practice.

Chapter 5

Experimental development

This chapter deals with the implementation of the localization system carried on during a live

demonstration on July 7th at the UAB campus. The idea of the localization system is to use

some of the techniques discussed in Chapter 3 in a real scenario. Since the live demonstration is

realized along a straight road without curves, only one single Kalman filter with a linear model

is used. The sections included in this chapter are the following:

1. Scenario Description: this section shows the map of the zone where the measurement

campaign is carried on as well as an explanation of the scenario under consideration.

2. Measurement Campaign: this section gives an explanation of the measurement campaign.

3. Implementation of a Java-based navigator: this section explains how the full navigator is

built.

4. Experimental Validation: this section is the demonstration of the developed localization

system.

5. Photos of the demonstration day.

5.1 Scenario Description

Figure 5.1 shows the main idea of this scenario which is composed basically of the following

elements:

• Reference nodes (occupation sensors in the figure or parking sensors) with known coordi-

nates located at each parking slot. These nodes have a magnetic sensor that detect if there

is a car or not. These nodes transfer to the supernode the state of the parking (busy/not

busy).

87

88 Chapter 5. Demonstration Testbed

Figure 5.1: Scenario Description.

• The unknown node brought by the user or integrated in the car. This node must be

real-time tracked to know from the central site through which route it moves. In this

application the user only can drive in one direction.

• The super node whose actions are mainly to relay the car detection information to the

central server.

• The central server which have a database to store for each parking sensor the following

information: the ID(Identificator), the state of the parking, the coordinates, and the MAC

address. The communication between either the super nodes and the unknown node is

carried on via 3G(Third Generation) or GPRS(General Packet Radio Service).

The communication between the parking sensors and the superNode is carried on by World

Sensing is realized through multihop. The detection of the parking is done by World Sensing as

well.

The WSN used in the XALOC live demonstration is composed by a total of 18 sensors manu-

factured by the company WorldSensing; each sensor located at each parking slot. Regarding the

localization strategy, each parking sensor sends periodically broadcast messages containing its

node ID(Identification) in addition to other parameters. Then the user terminal at the vehicle

is equipped with a 3G USB(Universal Serial Bus) dongle and a sensor node that performs the

following:

• Measuring the RSSI of the received broadcast messages.

• Estimating the real-time vehicle position with the different RSSI’s and parking sensor’s

IDs.

• Position information is used to extract parking information from XALOC database server.

• Real-time mapping of the vehicle position on the map previously downloaded from

GoogleMaps server.

5.1. Scenario Description 89

3/9

Localization Strategy

  Parking Sensors periodically send broadcast messages.
  User Terminal at the vehicle equipped with a sensor node:

  RSSI of received broadcast messages is measured.
  Vehicle position is estimated with the different RSSI’s and

parking sensors’ IDs.
  Position information is used to extract parking information

from XALOC server.

Figure 5.2: Localization Strategy

• Real-time mapping of the parking state information downloaded from the server via 3G

on a the map.

The user terminal performs all the previous operations by means of a developed software

that is discussed in section 5.3.

Figure 5.2 gives the idea of the localization strategy using a WSN.

The measurements zone is the fire department parking shown in the map of the figure 5.3.

The parking areas in this area are in battery instead of on-line car. Therefore 18 online cars are

marked as shown in the figures 5.4(a), 5.4(b) and 5.4(c). Figure 5.5(a) shows one of the sensors

located in one of the parkings. This sensors are placed inside a robust box like the shown in

figure 5.5(b) which are the ones seen in each of the parking slots in set of figures of 5.4. All

sensor nodes are based on the ZigBitTM600/800/900 MHz Wireless Module ATZB-900-B0 from

Atmel industry.

7/9

Live Demonstration

  July 7th
  UAB Campus
  20 parking areas

Figure 5.3: Scenario map.

90 Chapter 5. Demonstration Testbed

(a) (b)

(c) (d)

Figure 5.4: 5.4(a): Scenario Preparation, 5.4(b) and 5.4(d): online car marking, 5.4(d): Sensor

package

.

(a) Photo 1 (b) Photo 2

Figure 5.5: Photo1: Parking sensor, Photo 2: a parking sensor placed below a parked car

.

The RF characteristics of this wireless module is shown in following table 5.1.

5.2. Measurement Campaign 91

Parameters Condition Range Unit

Frequency Band

779 to 787 MHz

868 to 868.6

902 to 928

Number of Channels 15

Channel Spacing 2 MHz

Transmit Output Power −11 to +11 dBm

Receiver Sensitivity AWGN channel, PER=1%

20 Kbits

PSDU length of 20 octets

-110

dBm

40 Kbits -108

100 Kbits -101

250 Kbits -100

200 Kbits

PSDU length of 127 octets

-97

400 Kbits -90

500 Kbits -97

1000 Kbits -92

On-Air Data rate

BPSK modulation
20 (at 868 MHz)

Kbps

40 (at 915 MHz)

O-QPSK modulation
100 (at 868 MHz)

250 (at 915 MHz)

and 784 MHz)

TX Output/RX Input Nominal Impedance For balanced output 100 Ω

Range, Outdoors For balanced output 6 Km

Table 5.1: ATZB-900-B0 Sensors. RF Characteristics [16].

5.2 Measurement Campaign

First multilateration is used in a real scenario (outdoor) in order to evaluate its performance

in practical scenarios when the driver is moving at a constant speed. The number of anchor

92 Chapter 5. Demonstration Testbed

nodes used to perform multilateration is three (trilateration). The results of multilateration in

a real scenario composed by 6 reference nodes is shown in figures 5.6 and 5.7 for both low and

high moving speeds. The reference nodes are shown in blue and the estimates positions in red.

The x-dimension corresponds to the UTM Easting whereas the y-dimension corresponds to the

UTM Northing. Both are referred in m from the Greenwich meridian and the from the equator.

4.2605 4.2606 4.2606 4.2607 4.2607 4.2607 4.2608 4.2608 4.2609 4.261 4.261

x 10
5

4.5947

4.5947

4.5947

4.5947

4.5947

4.5947

4.5947

4.5947

4.5947
x 10

6 Trilateration. Low Speed. Probability of being inside: 69.697%.

Easting (m)

N
or

th
in

g
(m

)

Parking sensors

Position Measurements

Figure 5.6: Triangulation-based position measurements at low speed

PROVA A ALTA VELOCITAT 

 

Triangulació amb les 3 motes més properes evitant la possibilitat de tenir tres 
motes en un mateix eix. 

 

 

 

 

 

 

 

 

Figure 5.7: Triangulation-based position measurements at high speed

5.2. Measurement Campaign 93

One can see above that the performance of multilateration in real scenarios is really bad

giving large position errors as well as position estimates outside the measurement area. One

reason of that is due to the multipath effect resulting in large variations on the RSSI and

therefore giving bad position estimations. Another effect that can happen in wireless channels is

the random temporal variation of the path loss exponent for each wireless link. The performance

of multilateration when the noise power is high resulting with large position errors (σ2
shad =

30 dB, σz = 60m) is demonstrated using the simulator. The results are shown in figure 5.8.

Figure 5.8: Multilateration based positioning

It can be seen that some position estimates appear outside the road bounds specified by

the anchors positions. Notice that the simulator does not consider all the effects that appear

together in a real wireless channel. In fact higher position errors than 9m appear in practice. For

this reason another positioning technique is developed to have better position estimates. This

developed method is called as WAPM(Weighted Average Power Method). Using WAPM

the estimated positions appear always inside the scenario field. It is achieved by assigning

weights for each of the coordinates of those anchors that participate in the positioning. These

weights are proportional to the RSSI and averaged over all the RSSIs. Thus we can assure that

the position of the driver will be allays inside the measurement area and close to that anchor

with highest RSSI, i.e. highest weight.

Again the WAPM is formulated in (5.1) as in the section 4.1.

94 Chapter 5. Demonstration Testbed

(x̂, ŷ) = A · α

α = RSSIn∑N
i=1 RSSIi

, n = 1, · · ·Nanchors,
(5.1)

where A2×N is a matrix containing the (x, y) coordinates of N selected reference nodes with the

highest RSSI that participate in the positioning.

The performance of this method is demonstrated in practice as shown in figures 5.9 and 5.10

for both low and high speed, providing higher accuracy in the order of few meters. Furthermore

the probability that all position estimates appear inside the area is higher than in multilateration.

4.2606 4.2607 4.2607 4.2607 4.2608 4.2608 4.2609

x 10
5

4.5947

4.5947

4.5947

4.5947

4.5947

4.5947

x 10
6 Weighted Average. Low speed. Probability of being inside: 93.9394%

Easting(m)

N
or

th
in

g
(m

)

Parking sensors
Position measurements

Figure 5.9: WAPM-based position measurements at low speed

4.2606 4.2606 4.2607 4.2607 4.2607 4.2608 4.2608 4.2609

x 10
5

4.5947

4.5947

4.5947

4.5947

4.5947

4.5947

4.5947

x 10
6

Easting(m)

N
or

th
in

g(
m

)

Weighted average method. High speed. Probability of being inside: 90 %

Parking sensors
Position measurements

Figure 5.10: WAPM-based position measurements at high speed

A theoretical validation of WAPM can be demonstrated with the simulator. One can see in

5.2. Measurement Campaign 95

figure 5.11 that all the position estimates appear inside the road bounded by the parking sensors

even for high fadings such as σ2
shad = 30 dB and σ2

z = 60m.

Figure 5.11: Weighted Average Power based positioning with 4 reference nodes as in 5.8

Although WPAM guarantees that the user position is inside the measurement region, it does

not guarantees the true user position. Due to high multipath interference (constructive/destruc-

tive) the position measure makes jumps forward and backward. Initially this jumps were very

high in order between 10m−50m. In order to overcome this problem a one dimensional Kalman

filter was introduced into the localization system. The reason to use one dimension instead of

two dimensions as in chapter 4 is because the chosen scenario for the XALOC live demonstration

is a straight road with no curves. Therefore the Kalman equations used for the navigator are

the following:

State vector: The first element of the state vector is not the x-dimension because the

target is not moving through the longitudinal plane of the map but is moving along a diagonal

projection straight line since the scenario road is diagonal. Therefore the value d is the distance

between an initial point (x0, y0) in the projection straight line and the estimated position of the

driver.

96 Chapter 5. Demonstration Testbed

x =

 d

v

 (5.2)

The projection straight line contains the projected estimated positions. It is formulated in

(5.3).

 xp

yp

 =

 x

y

+

(
(b− a1x− a2y)

a2
1 + a2

2

) a1

a2

 , (5.3)

where

m =
y1 − y0

x1 − x0
(5.4)

b = y0 − x0m (5.5)

a1 = −m (5.6)

a2 = 1, (5.7)

being (x0, y0) and (x1, y1) the coordinates of initial and final points that define the projected

straight line, (x, y) the coordinates of the estimate and (xp, yp) the coordinates of the projected

estimate. The motivation to apply the projection is the same as most of GPS navigators apply,

i.e. the position of the driver is located in the middle of the road.

State equation:

x(k + 1) =

 1 T

0 1

x(k) +

 T 2/2

T

v(k) n = 1, 2, . . . (5.8)

Observation equation:

z(k + 1) =
[

1 0
]
x(k + 1) (5.9)

As the model is one dimension the covariance of the process acceleration noise is also a

unidimensional matrix: Q1×1 = σ2
a. As well the covariance of the measurements is R1×1 = σ2

z .

The initialization of the process covariance matrix is found in section 3.3. The optimal values

of the KF that have been found after a lot of campaign measurements are the ones shown in

(5.10).

5.3. Implementation of the navigator 97

σ2
a = 3m/s2 (5.10)

R = 25m (5.11)

T = 2.5 s (5.12)

The interval of the measurements in the final demonstration is 2.5 s thus avoiding two groups

of activated sensors.

5.3 Implementation of the navigator

The car carries the base node connected to the tablet netbook via USB interface that receives the

broadcast messages from all parking sensors. The navigator implemented for vehicle localization

and guidance includes the following components:

• User Terminal: netbook+sensor node+3G USB dongle.

• Application: JAVA programming language+tinyOS

A block diagram of the navigator implementation is shown in figure 5.12.

Main Program

RssiDemo.java

Broadcast messages

ParkingSensors.java

Window.java Coordinateconversion.javaKalman.java

(UTMxp UTMyp)(R,U,d, T, x(k-1))

(GEOxp,GEOyp)

(UTMxp, UTMyp)

AnchorCoordinates=(x1, x2..., xN ; y1, y2..., yN)AnchorCoordinates

x(k)

1

Figure 5.12: Navigator block diagram

The navigator is developed in Java using the Java IDE(Integrated Development Environment)

Netbeans. Java is an object oriented language which is based on several interconnected classes

98 Chapter 5. Demonstration Testbed

and objects. An object is an instance of a class and a Java class stores information for several

objects. An example: the student class stores objects with the following information: name,

surname, address, age, student ID and course level.

Below is given a description of the set of interconnected classes used for the navigator im-

plementation are:

• Rssidemo.java: this is the main class and the main program. This code is able to recollect

the frames coming from the base sensor node via serial USB port. Then the received power

source is read with the TinyOS function msg.get rssi() from the received packet msg. This

class uses TinyOS Java libraries provided to interact with the received packets from the

WSN through the base node. TinyOS is a free and open source component-based operating

system developed by the University of Berkeley. TinyOS is an embedded operating system

optimized for low-power energy constrained devices and written in the nesC programming

language as a set of cooperating tasks and processes interconnected. TinyOS is based in

event-driven handles.

The positioning computation as well projection is done in this code including the call to

the Kalman filter. The projected computed position is send to the Window class.

• Window.java: this class is the application window of the navigator having all the swing

Java objects (buttons, checkboxes, layeredpanes and so on). The origin of Window.java is

the library jposition[60] developed as an application for handling maps using Google Maps

from Java. The input of this application are the site coordinates in the GPS format. The

output is a map downloaded from Google Maps server as well as a marker icon over the

site coordinates.

The navigator requirements were to show both the real-time user’s position and the real-

time parkings state with different markers (or icons). The problem we found with the

jposition application is that the request to Google Maps can not be done every time the

position is computed. It is because during the downloading time of the map the parkings

states and/or the user’s position can be changed since the driver is moving. Therefore the

objective was to draw in the correct positions on map the parkings icons as well as the

user’s position in real-time. The map can be either downloaded from internet or loaded

locally depending of which of both provided buttons are selected: cold start and warm

start. If the cold start button is clicked then the map is downloaded from Google Maps

centred at the first computed user’s position. The advantage of the warm start button is

that a connection to the Google Maps server is not needed. The user’s position icon as

well as the parkings icons are drawn using the jLayeredPane class (an available Java class)

which allows to draw objects at different independent layers. At the layer 1 we have the

icons showing the parkings such us their state with two icons: blue for not busy and red

5.3. Implementation of the navigator 99

for busy. At the layer 2 we have the driver position icon shown in green.

• ParkingSensor.java: this class is used to create objects that store the UTM(Universal

Traverse Mercator) coordinates of every parking sensor. In the UTM definition, the world

is divided in zones along longitudinal plane and in letters along the latitudinal plane. The

UTM coordinates have the following form:

zone letter Northing Easting (5.13)

where Easting and Northing are expressed in m from the reference meridian Greenwich

and from the equator. In Spain the UTM zone is 31 and the UTM letter T.

• KalmanFilter.java: this class implements the one dimension Kalman filter. As the kalman

is of one dimension both the measurements covariance matrix and the process acceleration

noise covariance matrix have dimensions 1× 1 being thus the variance. The input to this

class is: the measurement d, the measurements variance, the acceleration noise variance,

the sampling time and the previous state vector.

• CoordinateConversion.java: this class is used to transform from geographical coordinates

to UTM coordinates and vice-versa.

The navigator is called ARID NAVIGATOR and is shown in figure 5.13. We can see the

base node connected on the left to the netbook.

Figure 5.13: ARID Navigator based on Java on a tablet netbook.

100 Chapter 5. Demonstration Testbed

The navigator Java application has the following elements:

1. Central coordinate: it gives the central GEO(Geographical) coordinate of the map.

2. Measured coordinate: it is the GEO coordinate obtained with trilateration taking the

RSSI’s of the received broadcasts messages. A coordinate transformation from UTM to

GEO is taken into account.

3. Cold start button: it allows to download a map centred at first computed user’s position.

4. Warm start button: this options allows to work without the need of downloading a map

of the zone. It loads a locally stored map of the zone.

5. Refresh button: this option available only if cold start button is selected. This button

refresh the map and downloads another map centred at the driver position.

6. Audio On/Off: if selected, an audio message appears every 10 s to announce the number

of available parking slots.

The navigator shows the status of each parking slot with blue and red icons drawn over the

map. It has been proved that when a car enters and leaves a certain parking slot, the parking

icon on the map is updated with the corresponding one and also an audio message says the

number of free parking slots. Figure 5.14 shows the Java application of the navigator:

Figure 5.14: ARID Navigator

The green point seen on the map in figure 5.14 is the driver’s position. It moves exactly in

the middle between the parking sensors due to the projection.

5.4. Experimental Validation 101

5.4 Experimental Validation

The scenario is composed by 18 sensors nodes located in 18 parkings in diagonal(9 parking slots

per site) in an area of dimensions 80 × 70m2. Thus the experimental validation is realized

through a diagonal projection straight line along the diagonal road. In order to demonstrate

that the localization system works even with different sensors from other manufacturers several

campaign-measurements are carried taking into account the following scenarios:

1. Estimation of the car position at several known positions: The car position estimates are

obtained at several known positions along the road between the parking slots. It is not

considered tracking.

2. Tracking of the car’s position that is moving at a constant speed of 10Km/h.

3. Tracking of the car’s position that is moving at a constant speed of 20Km/h.

For all the scenarios the following Kalman parameters:

σ2
u = 3m/s2 (5.14)

R = 10m (5.15)

The results of the three scenarios are shown in figures 5.15, 5.16 and 5.17 respectively.

426030 426035 426040 426045 426050 426055 426060 426065 426070 426075
4594715

4594720

4594725

4594730

4594735

4594740

4594745

4594750

4594755
Mean absolute error=2.5824m

Easting

N
o

rt
h

in
g

Parking places
Real position
Estimated position

Figure 5.15: Scenario 1: One realization of the estimation of the car at several fixed locations

.

Figure 5.15 shows a mean average error of 2.5824 m. The result is considered valid because

as a reference GPS achieves location precisions between 2.5− 3m.

102 Chapter 5. Demonstration Testbed

426030 426035 426040 426045 426050 426055 426060 426065 426070 426075
4594715

4594720

4594725

4594730

4594735

4594740

4594745

4594750

4594755
Mean absolute error= 2.4258m

Easting

N
o

rt
h

in
g

Parking places
Estimated position
Real position

(a)

426030 426035 426040 426045 426050 426055 426060 426065 426070 426075
4594715

4594720

4594725

4594730

4594735

4594740

4594745

4594750

4594755
Mean absolute error= 2.8565m

Easting

N
or

th
in

g

Parking places
Estimated position
Real position

(b)

Figure 5.16: Scenario 2: Two realizations of the car moving at a constant speed of 10 Km/h

.

426030 426035 426040 426045 426050 426055 426060 426065 426070 426075
4594715

4594720

4594725

4594730

4594735

4594740

4594745

4594750

4594755
Mean absolute error= 2.5842m

Easting

N
o

rt
h

in
g

Parking places
Estimated position
Real position

(a)

426030 426035 426040 426045 426050 426055 426060 426065 426070 426075
4594715

4594720

4594725

4594730

4594735

4594740

4594745

4594750

4594755
Mean absolute error= 3.737m

Easting

N
o

rt
h

in
g

Parking place
Estimated position
Real position

(b)

Figure 5.17: Scenario 3: Two realizations of the car moving at a constant speed of 20 Km/h

.

The different realizations in figure when the car moves at a constant speed of 10 Km/h gives

a mean error of 2.6412m whereas when the car moves a constant higher speed of 20 Km/h a

mean error of 3.1606m. Both are greater than the first scenario. Furthermore the error increases

with the car speed which means that for speeds higher than 20 Km/h the position accuracy

decreases achieving values greater than 3.1606m. The parameter’s navigator have been adjusted

to allow the tracking at low considerable speed. Speeds around 20 Km/h are common when the

driver is paying attention to the parking panels indications or the provided online navigator.

5.5. Summary 103

5.5 Summary

One the one hand, this chapter has shown a developed localization system based on a Wireless

Sensor Network. First multilateration is used in order to validate its performance in a real

scenario when the driver is moving at a constant speed. It is seen that the multilateration

position estimates have large position errors higher thant 5m most of them appear outside

the scenario region. Therefore a new positioning method called Weighted Average Power

Method is found such that it concentrates all the position estimates always inside the scenario

field. The last demonstrates position errors in the average of around 2− 3m and thus it can be

as an appropriate positioning technique for practical scenarios.

On the other hand a Java-based navigator called ARID NAVIGATOR has been developed

to show to the driver its real-time estimated position over a map. In addition to the position

the navigator informs the number of free parking slots either by audio or graphically showing

their location on the map. The map can be downloaded first from Google Maps server or loaded

locally depending on the selected button provided by the navigator. cold start or warm start.

The navigator is validated and it was demonstrated during the live demonstration carried on

July 7th 2010.

Chapter 6

Conclusions and Future work

This master thesis is sponsored by the regional XALOC project in the framework of the IN-

FOREGIÓ program (INFOREGIO/AJUTS 2009) funded by the Autonomous Government of

Catalonia. The carried work has dealt with the theoretical validation as well as the experimental

development of a centralized positioning and tracking in a Wireless Sensor Network.

Concerning the theoretical validation, it involves vehicle localization and tracking based on a

novel tracking algorithm called IMM (Interacting-Multiple-Model) which uses one Kalman

filter for uniform motion tracking and one Extended Kalman filter for the coordinated turns.

The theoretical analysis demonstrates that the performance of IMM algorithm is better than

having one KF and another EKF running in parallel independently because IMM compares the

corresponding probabilities of the measurement evaluated in the probability density function of

every model. In other words, IMM gives a mixed estimation based on the models probabilities.

The experimental development deals with the implementation of a Java-based navigator

on a tablet netbook. The navigator informs the driver of its real-time position on the map

and also the number of available parking slots. To validate the implemented navigator, a live

demonstration using real sensors is carried out. These sensors send information messages of

the parking state to a superNode that is connected with a database server. The experimental

development demonstrates that multilateration technique using distances from each parking

sensor’s RSSI is not accurate when the target is moving. For that reason, a new positioning

method called Weighted Average Power Method is proposed. Besides, a Kalman filter is adapted

to track the driver.

The XALOC project has had a large impact in the in the press. During the demonstration

day tens of producers came to record the live demonstration. The next day a lot news were

published. Some of the recorded newspapers are found in the appendix D.

Future work will be based on distributed approaches such as:

105

106 Chapter 6. System Design

• Distributed position

• Distributed tracking

Also a practical implementation of a distributed/centralized IMM algorithm in order to track

the driver through the straight lines and through the turns.

Moreover, collaborative localization will be implemented which in WSN with a few number

of reference nodes. Thus every unknown sensor will be able to obtain its coordinates from its

neighbour’s coordinates by means of a collaborative positioning algorithm.

Appendices

107

Appendix A

Scenario definition code

This appendix deals to show the involved code to create the street scenario as well as the target

routes and the anchors positions. The set of matlab .m files shown here are the following:

• GeneralScenario.m : this is the main file. In order to generate the true track a vector

called order contains the order to follow in each crossing which can be either straight on,

turn left or turn right.

• AnchorsPosDefinition.m: this code is intended to create a matrix with positions of the an-

chors. The third row of this matrix is the ID of the street where those anchors belongs. The

street ID’s are numbered like a 3× 3 (for vertical streets) matrix: 111213; 212223; 313233

and like a 2× 3 for the horizontal streets: 41, 42, 43; 51, 52, 53.

• changeDirection.m: this code which is executed when the target is inside in a crossing and

change the direction accordingly to the route vector and a direction vector. Route vector

only has the following values: 1 for going straight on, 2 for turn left and 3 for turn right.

The direction vector helps to indicate whether in which direction the target moves either

in x or in y axis. It can have the following values: 1 whenever the target moves with

positive velocity and -1 whenever the target moves with negative velocity.

• maneuver.m: this code performs nearly coordinated turn model inside the crossings when

needed.

• controlTurnRight.m: This function tells with the variables true and false if the target is

located at the border of the crossings to avoid that the target follows its turn right. The

meaning of the variables ”true” and ”false” are the following:

– true=1: If the target is located at the borders.

– false=0:If the target is inside the crossing

109

110 Appendix A

Listing A.1: MATLAB code of GeneralScenario.m

1 clear all;

2 %close all;

3 format short;

4

5 %----------------------------STREET PARAMETERS-----------------------------

6 Anchors Street = 24; %Number of total Anchors (12 per side)

7 distAnch = 4; %distance between anchors

8 WidthStreet=20;

9 start x = 2; %this would be the distance from the reference where

10 %the parking lots begin

11 lengthStreet = 2*start x +distAnch*((Anchors Street/2)-1);

12 %--

13

14 %------------------------SCENARIO AREA -----------------------------------

15 block horiz = 4; %total of horiz "block"

16 block vert = 3; %total of vert "block"

17 cr=(block horiz-1)*(block vert-1); %number of croisses

18 streets=cr;%Number of streets

19 Scenario Width = block horiz*lengthStreet+WidthStreet*(block horiz-1);

20 Scenario Height = block vert*lengthStreet+WidthStreet*(block vert-1);

21 %---

22

23 % %--------------------DEFINE THE POSITIONS OF THE ANCHORS -----------------

24 % %We associate the set of anchors of one street to a number that identifies

25 % %this street.

26 %

27 AnchPos=AnchorsPosDefinition(Anchors Street,block vert,block horiz,...

28 lengthStreet,distAnch,WidthStreet,start x);

29

30 %---------------------DEFINE THE CROSSINGS IN MATRICES--------------------

31 %As we have 6 crs in a 4x3 blocks:

32 cr1=[lengthStreet lengthStreet+WidthStreet;...

33 2*(lengthStreet+WidthStreet) 2*lengthStreet+WidthStreet];

34 cr2=[2*lengthStreet+WidthStreet 2*(lengthStreet+WidthStreet);...

35 2*(lengthStreet+WidthStreet) 2*lengthStreet+WidthStreet];

36 cr3=[3*lengthStreet+2*WidthStreet 3*(lengthStreet+WidthStreet);...

37 2*(lengthStreet+WidthStreet) 2*lengthStreet+WidthStreet];

38

39 cr4=[lengthStreet lengthStreet+WidthStreet;...

40 lengthStreet+WidthStreet lengthStreet];

41 cr5=[2*lengthStreet+WidthStreet 2*(lengthStreet+WidthStreet);...

42 lengthStreet+WidthStreet lengthStreet];

43 cr6=[3*lengthStreet+2*WidthStreet 3*(lengthStreet+WidthStreet);...

44 lengthStreet+WidthStreet lengthStreet];

45

46 %--------------------------TARGET PARAMETERS------------------------------

APPENDIX A. SCENARIO DEFINITION CODE 111

47 %Now let's start assuming that a mobile node M travels along a certain path

48 %with constant velocity. The following parameters are required:

49

50 T target = 0.01;%sampling time in seconds of the target. Every T target,

51 %the target has moved v*T target m.

52 T motes=5; %sampling time in seconds of the active motes.

53 %Every T motes sg, all active anchors send a message to the target.

54 anchors ML = 4; %number of considered anchors for multilateration computation

55 order=[1,1,1]; %1: go ahead, 2: turn left, 3:turn right

56 path=[51,52,53,54];

57 direction=[1;0]; %this variable helps to indicate whether in which

58 %direction the target moves either in x or in y axis:

59 %1: the target moves with positive velocity

60 %-1: the target moves with negative velocity

61 c=1; %to check the order vector

62 v=20*1000/3600; %velocity of the target in m/s

63 distFromAnchors =2; %Distance of the target with respect to the anchors

64 target state=[2;v;50;0;path(1)]; %Initial target state.

65 %It is in the form of [x,vx,y,vy,streetID].The last row identifies the target

66 %to that street where it is located

67 r1=WidthStreet-distFromAnchors;

68 r2=distFromAnchors;

69 yaw rate left=v/r1; %turning rate in rad/sg. At the beginning we assume

70 %a constant turning rate

71 yaw rate right=-v/r2; %turning rate in rad/sg. At the beginning we assume

72 %a constant turning rate

73 dt right=(pi/2)*r2/v; %Need time to turn (pi/2) driving at a constant velocity v

74

75 %transition matrix

76 F=[1 T target 0 0;0 1 0 0;0 0 1 T target ;0 0 0 1];

77

78 %---------------------Next Define the turning matrix ---------------------

79 %We will have two turning matrices: one to turn left and the other to turn

80 %right

81 %--------Turn left matrix---------

82 coswt left = cos(yaw rate left*T target);

83 coswto left = cos(yaw rate left*T target)-1;

84 coswtopw left = coswto left/yaw rate left;

85 sinwt left = sin(yaw rate left*T target);

86 sinwtpw left = sinwt left/yaw rate left;

87

88 Turning left = [1 sinwtpw left 0 coswtopw left;...

89 0 coswt left 0 -sinwt left ;...

90 0 -coswtopw left 1 sinwtpw left ;...

91 0 sinwt left 0 coswt left];

92

93 % %--------Turn right matrix---------

112 Appendix A

94 coswt right = cos(yaw rate right*dt right);

95 coswto right = cos(yaw rate right*dt right)-1;

96 coswtopw right = coswto right/yaw rate right;

97 sinwt right = sin(yaw rate right*dt right);

98 sinwtpw right = sinwt right/yaw rate right;

99

100

101 Turning right = [1 sinwtpw right 0 coswtopw right;...

102 0 coswt right 0 -sinwt right ;...

103 0 -coswtopw right 1 sinwtpw right ;...

104 0 sinwt right 0 coswt right];

105 %-------------------------PATH LOSS MODEL PARAMETERS-----------------------

106 sigma shad = 2; %shadow fading variance in dB

107 P0 = -63.2; %Received power at 1 m used for the received power model in dBm

108 gamma=2;

109 %--

110 x=1; %Target Samples

111 ml=1; %Target estimated samples

112 count=0;

113 %----------------------------BEGIN THE TRACKING ---------------------------

114 while 0≤target state(1,x) && target state(1,x)≤ max(AnchPos(1,:))...

115 && 0≤target state(3,x) && target state(3,x)≤ max(AnchPos(2,:))

116 count=count+T target;

117 count=roundn(count);

118 %Now all the received powers of all the anchors are gathered by the

119 %target. We use the simple path loss model:

120 %Pr(dBm)=P0(dBm)-10·gamma·log10(d i), where d i is the euclidean

121 %distance from the mobile target to anchor i

122

123 %Below we check if the target is inside a cr

124

125 if ((cr1(1,1)≤target state(1,x) && target state(1,x)≤cr1(1,2)) && ...

126 (cr1(2,2)≤target state(3,x) && target state(3,x)≤cr1(2,1)) | | ...

127 (cr2(1,1)≤target state(1,x) && target state(1,x)≤cr2(1,2)) && ...

128 (cr2(2,2)≤target state(3,x) && target state(3,x)≤cr2(2,1)) | | ...

129 (cr3(1,1)≤target state(1,x) && target state(1,x)≤cr3(1,2)) && ...

130 (cr3(2,2)≤target state(3,x) && target state(3,x)≤cr3(2,1)) | | ...

131 (cr4(1,1)≤target state(1,x) && target state(1,x)≤cr4(1,2)) && ...

132 (cr4(2,2)≤target state(3,x) && target state(3,x)≤cr4(2,1)) | | ...

133 (cr5(1,1)≤target state(1,x) && target state(1,x)≤cr5(1,2)) && ...

134 (cr5(2,2)≤target state(3,x) && target state(3,x)≤cr5(2,1)) | | ...

135 (cr6(1,1)≤target state(1,x) && target state(1,x)≤cr6(1,2)) && ...

136 (cr6(2,2)≤target state(3,x) && target state(3,x)≤cr6(2,1)))

137

138 %Next we need to check wether in which cr is located the target

139 %-----------------if the target is cr the cr 1 ---------------

140 if ((cr1(1,1)≤target state(1,x)) && (target state(1,x)≤cr1(1,2)) && ...

APPENDIX A. SCENARIO DEFINITION CODE 113

141 (cr1(2,2)≤target state(3,x)) && (target state(3,x)≤cr1(2,1)))

142 [true,false,dir,target,x1]=controlTurnRight(direction,v,cr1,T target,...

143 target state,x,distFromAnchors);

144 if (true==0 && false==1)

145 [y,x]=maneuver(F,order,c,Turning left,Turning right,target state,x);

146 target state(1:4,x)=y;

147 else

148 direction=dir;

149 target state=target;

150 x=x1;

151 end

152 end

153

154 %----------------------if the target is cr the cr 2-------

155 if ((cr2(1,1)≤target state(1,x) && target state(1,x)≤cr2(1,2)) && ...

156 (cr2(2,2)≤target state(3,x) && target state(3,x)≤cr2(2,1)))

157 [true,false,dir,target,x1]=controlTurnRight(direction,v,cr2,T target,...

158 target state,x,distFromAnchors);

159 if (true==0 && false==1)

160 [y,x]=maneuver(F,order,c,Turning left,Turning right,target state,x);

161 target state(1:4,x)=y;

162 else

163 direction=dir;

164 target state=target;

165 x=x1;

166 end

167 end

168

169 %----------------------if the target is cr the cr 3----------

170 if ((cr3(1,1)≤target state(1,x) && target state(1,x)≤cr3(1,2)) && ...

171 (cr3(2,2)≤target state(3,x) && target state(3,x)≤cr3(2,1)))

172 [true,false,dir,target,x1]=controlTurnRight(direction,v,cr3,T target,...

173 target state,x,distFromAnchors);

174 if (true==0 && false==1)

175 [y,x]=maneuver(F,order,c,Turning left,Turning right,target state,x);

176 target state(1:4,x)=y;

177 else

178 direction=dir;

179 target state=target;

180 x=x1;

181 end

182 end

183 %----------------------if the target is cr the cr 4-------

184 if ((cr4(1,1)≤target state(1,x) && target state(1,x)≤cr4(1,2)) && ...

185 (cr4(2,2)≤target state(3,x) && target state(3,x)≤cr4(2,1)))

186 [true,false,dir,target,x1]=controlTurnRight(direction,v,cr4,T target,...

187 target state,x,distFromAnchors);

114 Appendix A

188 if (true==0 && false==1)

189 [y,x]=maneuver(F,order,c,Turning left,Turning right,target state,x);

190 target state(1:4,x)=y;

191 else

192 direction=dir;

193 target state=target;

194 x=x1;

195 end

196 end

197 %----------------------if the target is cr the cr 5-----------

198 if ((cr5(1,1)≤target state(1,x) && target state(1,x)≤cr5(1,2)) && ...

199 (cr5(2,2)≤target state(3,x) && target state(3,x)≤cr5(2,1)))

200 [true,false,dir,target,x1]=controlTurnRight(direction,v,cr5,T target,...

201 target state,x,distFromAnchors);

202 if (true==0 && false==1)

203 [y,x]=maneuver(F,order,c,Turning left,Turning right,target state,x);

204 target state(1:4,x)=y;

205 else

206 direction=dir;

207 target state=target;

208 x=x1;

209 end

210 end

211 %----------------------if the target is cr the cr 6-------

212

213 if ((cr6(1,1)≤target state(1,x) && target state(1,x)≤cr6(1,2)) && ...

214 (cr6(2,2)≤target state(3,x) && target state(3,x)≤cr6(2,1)))

215 [true,false,dir,target,x1]=controlTurnRight(direction,v,cr6,T target,...

216 target state,x,distFromAnchors);

217 if (true==0 && false==1)

218 [y,x]=maneuver(F,order,c,Turning left,Turning right,target state,x);

219 target state(1:4,x)=y;

220 else

221 direction=dir;

222 target state=target;

223 x=x1;

224 end

225 end

226

227 else %If the target is not in a cr

228

229 %Before it must check if the target has crossed one of the possible

230 %crs. We must do it for each cr.

231

232 %-------------------%If target has crossed cr 1---------------------

233 if x>1

234 if ((cr1(1,1)≤target state(1,x-1))&&(target state(1,x-1)≤cr1(1,2))&&...

APPENDIX A. SCENARIO DEFINITION CODE 115

235 (cr1(2,2)≤target state(3,x-1)) && (target state(3,x-1)≤cr1(2,1)))

236 [target state,direction,c]=changeDirection(direction,order,c,v,cr1,...

237 distFromAnchors,start x,target state,x);

238 end

239 %-------------------%If target has crossed cr 2---------------------

240

241 if ((cr2(1,1)≤target state(1,x-1) && target state(1,x-1)≤cr2(1,2)) && ...

242 (cr2(2,2)≤target state(3,x-1) && target state(3,x-1)≤cr2(2,1)))

243 [target state,direction,c]=changeDirection(direction,order,c,v,cr2,...

244 distFromAnchors,start x,target state,x);

245 end

246

247 %-------------------%If target has crossed cr 3---------------------

248 if ((cr3(1,1)≤target state(1,x-1) && target state(1,x-1)≤cr3(1,2)) && ...

249 (cr3(2,2)≤target state(3,x-1) && target state(3,x-1)≤cr3(2,1)))

250 [target state,direction,c]=changeDirection(direction,order,c,v,cr3,...

251 distFromAnchors,start x,target state,x);

252 end

253 %-------------------%If target has crossed cr 4---------------------

254 if ((cr4(1,1)≤target state(1,x-1) && target state(1,x-1)≤cr4(1,2)) && ...

255 (cr4(2,2)≤target state(3,x-1) && target state(3,x-1)≤cr4(2,1)))

256 [target state,direction,c]=changeDirection(direction,order,c,v,cr4,...

257 distFromAnchors,start x,target state,x);

258 end

259

260 %-------------------%If target has crossed cr 5---------------------

261 if ((cr5(1,1)≤target state(1,x-1) && target state(1,x-1)≤cr5(1,2)) && ...

262 (cr5(2,2)≤target state(3,x-1) && target state(3,x-1)≤cr5(2,1)))

263 [target state,direction,c]=changeDirection(direction,order,c,v,cr5,...

264 distFromAnchors,start x,target state,x);

265 end

266 %-------------------%If target has crossed cr 6---------------------

267 if ((cr6(1,1)≤target state(1,x-1) && target state(1,x-1)≤cr6(1,2)) && ...

268 (cr6(2,2)≤target state(3,x-1) && target state(3,x-1)≤cr6(2,1)))

269 [target state,direction,c]=changeDirection(direction,order,c,v,cr6,...

270 distFromAnchors,start x,target state,x);

271 end

272 end

273 target state(5,x)=path(c);

274 x=x+1;

275

276 target state(1:4,x)=F*target state(1:4,x-1);

277 end

278 target state=roundn(target state);

279 end

280 save linea recta.mat target state

281

116 Appendix A

282 figure(1), plot(AnchPos(1,1:length(AnchPos)),AnchPos(2,1:length(AnchPos)),...

283 'x','markersize',5);

284 hold on

285 axis([0 4*lengthStreet+3*WidthStreet 0 3*lengthStreet+2*WidthStreet]);

286 plot(target state(1,:),target state(3,:),'b','markersize',5);

287 legend('Reference Nodes','real track', ...

288 'estimated track with multilateration','Location','NorthEast');

289

290 %-------TO MAKE A MPG MOVIE: is a set of image frames -------

291 % nframes=length(target state)-1;

292 % M=moviein(nframes);

293 % for it=1:nframes

294 % figure(2), plot(AnchPos(1,1:length(AnchPos)),...

295 %AnchPos(2,1:length(AnchPos)),'x','markersize',5);

296 % axis([0 4*lengthStreet+3*WidthStreet 0 3*lengthStreet+2*WidthStreet]);

297 % hold on

298 % plot(target state(1,it),target state(3,it),'b*','markersize',5);

299 % plot(estimated pos target(1,it), estimated pos target(2,it),'r*',...

300 %'markersize',10);

301 % if it>1

302 % plot(target state(1,1:it-1),target state(3,1:it-1),'*','Color',...

303 %[135;206;250]/255,'markersize',5);

304 % plot(estimated pos target(1,1:it-1), estimated pos target(2,1:it-1),...

305 %'*','Color',[255;192;203]/255,'markersize',10);

306 % end

307 % legend('Reference Nodes','real track',...

308 %'estimated track with multilateration','Location','NorthEast');

309 % M(:,it)=getframe;

310 % close all;

311 % end

312 % movie(M,1);

313 % save trackingML2 withoutnoise.mat M

314 %convert the movie to mpeg format to play the mpeg file: unix('trackingML.mpg')

315 % mpgwrite(M,jet,'trackingML2 withoutnoise.mpg');

Listing A.2: MATLAB code of AnchorsPosDefinition.m

1 %--------------------DEFINE THE POSITIONS OF THE ANCHORS -----------------

2 %We associate the set of anchors of one street to a number that identifies

3 %this street. The function returns a matrix with

4 %[x,y,streetID,gamma near,gamma far,sigma shad near,sigma shad far]

5

6 function [AnchPos]=AnchorsPosDefinition(Anchors Street,block vert,block horiz,...

7 lengthStreet,distAnch,WidthStreet,start x)

8

9 Total Anchors=Anchors Street*(block vert-1)*(block horiz)...

APPENDIX A. SCENARIO DEFINITION CODE 117

10 +Anchors Street*(block horiz-1)*(block vert);

11 AnchPos = zeros(3,Total Anchors); %Anchors Positions.

12 %AnchPos(1:2,j) = (x,y) coordinates for the anchor j

13

14 N=Anchors Street;

15 a=1;

16 z=a;

17 j=2;

18 q=11;

19 s=(lengthStreet*block vert+WidthStreet*(block vert-1))-start x;

20 pattern=s:-distAnch:s-(distAnch*(Anchors Street/2)-1);

21 A=pattern'*ones(1,block vert);

22 A=A(:);

23 B=((WidthStreet+lengthStreet)*(0:block vert-1))'*ones(1,Anchors Street/2);

24 B=B';

25 B=B(:);

26 y=A-B; %This vector contains the y coordinates of all anchors nodes placed

27 %in vertical streets.

28

29 %Below positions of those anchor nodes that are placed along the vert

30 %streets are filled

31 for i=1:block horiz-1

32 %For x coordinates of the left side nodes

33 x left=lengthStreet*i+WidthStreet*(i-1);

34 %For x coordinates of the right side nodes

35 x right=lengthStreet*i+WidthStreet*i;

36 AnchPos(1,a:2:(a-1)+N*block vert)= x left;

37 AnchPos(1,j:2:(a-1)+N*block vert)= x right;

38

39 %For y coordinates of the left side nodes

40 AnchPos(2,a:2:(a-1)+N*block vert)= y;

41 %For y coordinates of the right side nodes

42 AnchPos(2,j:2:(a-1)+N*block vert)= y;

43

44 for n=1:block vert

45 AnchPos(3,z:(z-1)+N)=q+(n-1);

46 z=z+N;

47 end

48 a=a+N*block vert;

49 z=a;

50 j=a+1;

51 q=11;

52 q=q+10*i;

53 end

54

55 m=block vert-1;

56 j=a+1;

118 Appendix A

57 n=1;

58 q=41;

59 k=0;

60 %Below positions of those anchor nodes that are placed along the horiz

61 %streets are filled

62 pattern=start x:distAnch:start x+(distAnch*(Anchors Street/2)-1);

63 A=pattern'*ones(1,block horiz);

64 A=A(:);

65 B=((WidthStreet+lengthStreet)*(0:block horiz-1))'*ones(1,Anchors Street/2);

66 B=B';

67 B=B(:);

68 x=A+B; %This vector contains the x coordinates of all anchors nodes placed

69 %in horizontal streets.

70

71 for p=1:block vert-1

72 y left=lengthStreet*m+WidthStreet*m;

73 y right=lengthStreet*m+WidthStreet*(m-1);

74 %For y coordinates of the left side nodes

75 AnchPos(2,a:2:(a-1)+N*block horiz)= y left;

76 %For y coordinates of the right side nodes

77 AnchPos(2,j:2:(a-1)+N*block horiz)= y right;

78

79 %For x coordinates of the left side nodes

80 AnchPos(1,a:2:(a-1)+N*block horiz)= x;

81 %For x coordinates of the right side nodes

82 AnchPos(1,j:2:(a-1)+N*block horiz)= x;

83

84 for n=1:block horiz

85 AnchPos(3,z:(z-1)+N)=q+(n-1);

86 z=z+N;

87 end

88 a=a+N*block horiz;

89 m=m-1;

90 n=n+1;

91 j=a+1;

92 q=41;

93 q=q+10*p;

94 end

95

96 %-------------------------END OF ANCHOR POSITIONS-------------------------

Listing A.3: MATLAB code of changeDirection.m

1 function [target state,direction,c]=changeDirection(dir,ord,c1,v,targetState,x)

2 target state=targetState;

3 direction=dir;

APPENDIX A. SCENARIO DEFINITION CODE 119

4 if dir(1,1) ==1 && ord(c1)==2 %if target turn left it changes the direction

5 direction(2,1)=1;

6 direction(1,1)=0;

7 target state(2,x)=0;

8 target state(4,x)=v;

9 elseif dir(1,1)==-1 && ord(c1)==2

10 direction(2,1)=-1;

11 direction(1,1)=0;

12 target state(2,x)=0;

13 target state(4,x)=-v;

14 elseif dir(1,1)==1 && ord(c1)==3

15 direction(2,1)=-1;

16 direction(1,1)=0;

17 target state(2,x)=0;

18 target state(4,x)=-v;

19 elseif dir(1,1)== -1 && ord(c1)==3

20 direction(2,1)=1;

21 direction(1,1)=0;

22 target state(2,x)=0;

23 target state(4,x)=v;

24 elseif dir(2,1)==1 && ord(c1)==2

25 direction(1,1)=-1;

26 direction(2,1)=0;

27 target state(2,x)=-v;

28 target state(4,x)=0;

29 elseif dir(2,1)==-1 && ord(c1)==2

30 direction(1,1)=1;

31 direction(2,1)=0;

32 target state(2,x)=v;

33 target state(4,x)=0;

34 elseif dir(2,1)== 1 && ord(c1)==3

35 direction(1,1)=1;

36 direction(2,1)=0;

37 target state(2,x)=v;

38 target state(4,x)=0;

39 elseif dir(2,1)==-1 && ord(c1)==3

40 direction(1,1)=-1;

41 direction(2,1)=0;

42 target state(2,x)=-v;

43 target state(4,x)=0;

44 end

45 c=c1+1;

Listing A.4: MATLAB code of maneuver.m

1 function [y,x]=maneuver(F,order,c,Turning left,Turning right,target state,xin)

120 Appendix A

2 y=target state;

3 if order(c)==1 %straight on

4 x=xin+1;

5 y(1:4,x)=F*target state(1:4,x-1);

6 % target state(5,x)=path(c);

7 elseif order(c)==2 %turn left

8 x=xin+1;

9 y(1:4,x)= Turning left* target state(1:4,x-1);

10

11 else %turn right

12 x=xin+1;

13 y(1:4,x)= Turning right* target state(1:4,x-1);

14 end

15 y=y(1:4,x);

Listing A.5: MATLAB code of controlTurnRight.m

1 function [true,false,dir,targetState,x1]=controlTurnRight(direction,v,...

2 cr,T target,target state,x,distFromAnchors)

3 targetState=target state;

4 dir=direction;

5 true=0;

6 false=1;

7 x1=x;

8 v=v*1000/3600;

9 %This function tells if the target is located at the border of the

10 %crs to avoid that the target follows its turn right.

11 %true=1: If the target is located at the borders

12 %false=0:If the target is inside the cr

13

14 if (direction(1,1)==1 && direction(2,1)==0 && ...

15 ((target state(3,x)==cr(2,2)) | | ...
16 ((cr(2,2)≤target state(3,x)) && (target state(3,x)≤cr(2,2)+1))))

17 x1=x+1;

18 targetState(1:4,x1)=[cr(1,1)+distFromAnchors;0;...

19 target state(3,x)-v*T target;-v];

20 true=1;

21 false=0;

22 elseif (direction(1,1)==-1 && direction(2,1)==0 && ...

23 ((target state(3,x)==cr(2,1)) | | ...
24 ((cr(2,1)-1≤target state(3,x)) && (target state(3,x)≤cr(2,1)))))

25 x1=x+1;

26 targetState(1:4,x1)=[cr(1,2)-distFromAnchors;0;cr(2,1)+v*T target;v];

27 true=1;

28 false=0;

29 elseif (direction(1,1)==0 && direction(2,1)==1 &&...

APPENDIX A. SCENARIO DEFINITION CODE 121

30 ((target state(1,x)==cr(1,2)) | | ...
31 ((cr(1,2)-1≤target state(1,x)) && (target state(1,x)≤cr(1,2)))))

32 x1=x+1;

33 targetState(1:4,x1)=[cr(1,2)+v*T target;0;cr(2,2)+distFromAnchors;-v];

34 true=1;

35 false=0;

36 elseif (direction(1,1)==0 && direction(2,1)==-1 && ...

37 ((target state(1,x)==cr(1,1)) | | ...
38 ((cr(1,1)≤target state(1,x)) && (target state(1,x)≤cr(1,1)+1))))

39 x1=x+1;

40 targetState(1:4,x1)=[cr(1,1)-v*T target;0;cr(2,1)-distFromAnchors;-v];

41 true=1;

42 false=0;

43 end

122 Appendix A

Appendix B

Matlab GUI Code

This appendix deals to show the involved code to create the tracking simulator. The set of files

”*.m” are the following:

• TrackingApp.m: This is the Matlab GUI tracking application.

• TrackingIMMKFandEKF.m: This code implemments the simulator, that is, when user

click over the button run that appears in the application. This function calls all the

tracking estimators.

• Multilateration.m: This code performs multilateration with those four active anchor nodes

with maximum received power or with those anchors located at the crossing borders. If the

option weighted average is specified in the application, instead of doing multilateration,

the weighted average method is used.

• weightedAverage.m: This code generates the coefficients used in the weighted average

method to calculate the target position.

• posfun.m: It is the cost function C(x, y) appeared in 2.9. This cost function is the eu-

clidean distance from the target to each of the anchors. The function fminunc from matlab

optimization toolbox finds the values (x, y) that minimize C(x, y).

• Kalman.m: It implements the Kalman Filter.

• genKalmancoefskf.m: This code computes the kalman coefficients from the state covari-

ance, measurement covariance, transition matrix, observation matrix, sampling time and

acceleration noise variance.

• ExtendedKalman.m: It implements the Extended Kalman Filter

123

124 Appendix B

• genKalmancoefsekf.m: This code computes the kalman coefficients from the state covari-

ance, measurement covariance, transition matrix, observation matrix, sampling time and

acceleration noise variance.

• chooseTransitionMatrix.m: This function choose the transition matrix depending on the

target behaviour (if it is turning on or it is going straight on).

• immct: This code implements the IMM estimator.It requires the functions Kalman.m,

ExtendedKalman.m and chooseTransitionMatrix.m.

Listing B.1: MATLAB code of TrackingApp.m

1 function varargout = TrackingApp(varargin)

2

3 % TRACKINGAPP M-file for TrackingApp.fig

4 % TRACKINGAPP, by itself, creates a new TRACKINGAPP or raises the existing

5 % singleton*.

6 %

7 % H = TRACKINGAPP returns the handle to a new TRACKINGAPP or the handle to

8 % the existing singleton*.

9 %

10 % TRACKINGAPP('CALLBACK',hObject,eventData,handles,...) calls the local

11 % function named CALLBACK in TRACKINGAPP.M with the given input arguments.

12 %

13 % TRACKINGAPP('Property','Value',...) creates a new TRACKINGAPP or raises the

14 % existing singleton*. Starting from the left, property value pairs are

15 % applied to the GUI before TrackingApp OpeningFcn gets called. An

16 % unrecognized property name or invalid value makes property application

17 % stop. All inputs are passed to TrackingApp OpeningFcn via varargin.

18 %

19 % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

20 % instance to run (singleton)".

21 %

22 % See also: GUIDE, GUIDATA, GUIHANDLES

23

24 % Edit the above text to modify the response to help TrackingApp

25

26 % Last Modified by GUIDE v2.5 09-Jul-2010 11:16:45

27

28 % Begin initialization code - DO NOT EDIT

29 gui Singleton = 1;

30 gui State = struct('gui Name', mfilename, ...

31 'gui Singleton', gui Singleton, ...

32 'gui OpeningFcn', @TrackingApp OpeningFcn, ...

33 'gui OutputFcn', @TrackingApp OutputFcn, ...

34 'gui LayoutFcn', [] , ...

APPENDIX B. MATLAB GUI CODE 125

35 'gui Callback', []);

36 if nargin && ischar(varargin{1})
37 gui State.gui Callback = str2func(varargin{1});
38 end

39

40 if nargout

41 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
42 else

43 gui mainfcn(gui State, varargin{:});
44 end

45 % End initialization code - DO NOT EDIT

46 muProb=[];

47

48 % --- Executes just before TrackingApp is made visible.

49 function TrackingApp OpeningFcn(hObject, eventdata, handles, varargin)

50 % This function has no output args, see OutputFcn.

51 % hObject handle to figure

52 % eventdata reserved - to be defined in a future version of MATLAB

53 % handles structure with handles and user data (see GUIDATA)

54 % varargin command line arguments to TrackingApp (see VARARGIN)

55

56 % Choose default command line output for TrackingApp

57 cla(handles.axes1,'reset');

58 set(handles.edit23,'String','');

59 set(handles.edit24,'String','');

60 set(handles.edit25,'String','');

61 set(handles.edit26,'String','');

62 set(handles.edit23,'enable','off');

63 set(handles.edit24,'enable','off');

64 set(handles.edit25,'enable','off');

65 set(handles.edit26,'enable','off');

66 set(handles.Multilateration,'Value',1);

67 set(handles.radiobutton1,'Value',0);

68 handles.output = hObject;

69

70 set(handles.pushbutton2,'enable','off');

71 set(hObject,'toolbar','figure');

72

73

74 % Update handles structure

75 guidata(hObject, handles);

76

77 % UIWAIT makes TrackingApp wait for user response (see UIRESUME)

78 % uiwait(handles.figure1);

79

80 %----------------------------STREET PARAMETERS-----------------------------

81 Anchors Street = 24; %Number of total Anchors (12 per side)

126 Appendix B

82 distAnch = 4; %distance between anchors

83 WidthStreet=20;

84 start x = 2; %this would be the distance from the reference where

85 %the parking lots begin

86 lengthStreet = 2*start x +distAnch*((Anchors Street/2)-1);

87 %--

88 %------------------------SCENARIO AREA -----------------------------------

89 block horiz = 4; %total of horiz "block"

90 block vert = 3; %total of vert "block"

91 %---

92 %--------------------DEFINE THE POSITIONS OF THE ANCHORS -----------------

93

94 AnchPos=AnchorsPosDefinition(Anchors Street,block vert,block horiz,...

95 lengthStreet,distAnch,WidthStreet,start x);

96

97 axes(handles.axes1);

98 plot(AnchPos(1,1:length(AnchPos)),AnchPos(2,1:length(AnchPos)),'x',...

99 'markersize',5);

100 set(handles.axes1, 'XLim', [0 4*lengthStreet+3*WidthStreet]);

101 set (handles.axes1, 'YLim', [0 3*lengthStreet+2*WidthStreet]);

102 xlabel('distance in m');

103 ylabel('distance in m');

104 video=0;

105 % --- Outputs from this function are returned to the command line.

106 function varargout = TrackingApp OutputFcn(hObject, eventdata, handles)

107 % varargout cell array for returning output args (see VARARGOUT);

108 % hObject handle to figure

109 % eventdata reserved - to be defined in a future version of MATLAB

110 % handles structure with handles and user data (see GUIDATA)

111

112 % Get default command line output from handles structure

113 varargout{1} = handles.output;

114

115

116 % --- Executes during object deletion, before destroying properties.

117 function figure1 DeleteFcn(hObject, eventdata, handles)

118 % hObject handle to figure1 (see GCBO)

119 % eventdata reserved - to be defined in a future version of MATLAB

120 % handles structure with handles and user data (see GUIDATA)

121

122

123 % --

124 function Archivo Callback(hObject, eventdata, handles)

125 % hObject handle to Archivo (see GCBO)

126 % eventdata reserved - to be defined in a future version of MATLAB

127 % handles structure with handles and user data (see GUIDATA)

128

APPENDIX B. MATLAB GUI CODE 127

129

130 % --

131 function Instructions Callback(hObject, eventdata, handles)

132 % hObject handle to Instructions (see GCBO)

133 % eventdata reserved - to be defined in a future version of MATLAB

134 % handles structure with handles and user data (see GUIDATA)

135

136 open Instructions.fig

137

138 function edit1 Callback(hObject, eventdata, handles)

139 % hObject handle to edit1 (see GCBO)

140 % eventdata reserved - to be defined in a future version of MATLAB

141 % handles structure with handles and user data (see GUIDATA)

142

143 % Hints: get(hObject,'String') returns contents of edit1 as text

144 % str2double(get(hObject,'String')) returns contents of edit1 as a double

145 sigma shad=str2double(get(handles.edit1,'string'));

146 if isnan(sigma shad)

147 errordlg('You must enter a numeric value to Sigma shad','Bad Input','modal')

148 set(handles.edit1,'String',2);

149 end

150 % --- Executes during object creation, after setting all properties.

151 function edit1 CreateFcn(hObject, eventdata, handles)

152 % hObject handle to edit1 (see GCBO)

153 % eventdata reserved - to be defined in a future version of MATLAB

154 % handles empty - handles not created until after all CreateFcns called

155

156 % Hint: edit controls usually have a white background on Windows.

157 % See ISPC and COMPUTER.

158 if ispc && isequal(get(hObject,'BackgroundColor'), ...

159 get(0,'defaultUicontrolBackgroundColor'))

160 set(hObject,'BackgroundColor','white');

161 end

162

163 function edit2 Callback(hObject, eventdata, handles)

164 % hObject handle to edit2 (see GCBO)

165 % eventdata reserved - to be defined in a future version of MATLAB

166 % handles structure with handles and user data (see GUIDATA)

167

168 % Hints: get(hObject,'String') returns contents of edit2 as text

169 % str2double(get(hObject,'String')) returns contents of edit2 as a double

170

171 std ml=str2double(get(handles.edit2,'string'));

172 if isnan(std ml)

173 errordlg('You must enter a numeric value to ML Standard Deviation',...

174 'Bad Input','modal')

175 set(handles.edit2,'String',3);

128 Appendix B

176

177 end

178 % --- Executes during object creation, after setting all properties.

179 function edit2 CreateFcn(hObject, eventdata, handles)

180 % hObject handle to edit2 (see GCBO)

181 % eventdata reserved - to be defined in a future version of MATLAB

182 % handles empty - handles not created until after all CreateFcns called

183

184 % Hint: edit controls usually have a white background on Windows.

185 % See ISPC and COMPUTER.

186 if ispc && isequal(get(hObject,'BackgroundColor'),...

187 get(0,'defaultUicontrolBackgroundColor'))

188 set(hObject,'BackgroundColor','white');

189 end

190

191 function edit3 Callback(hObject, eventdata, handles)

192 % hObject handle to edit2 (see GCBO)

193 % eventdata reserved - to be defined in a future version of MATLAB

194 % handles structure with handles and user data (see GUIDATA)

195

196 % Hints: get(hObject,'String') returns contents of edit2 as text

197 % str2double(get(hObject,'String')) returns contents of edit2 as a double

198

199 T motes=str2double(get(handles.edit3,'string'));

200 if isnan(T motes)

201 errordlg('You must enter a numeric value to Sensor Activation',...

202 'Bad Input','modal')

203 set(handles.edit3,'String',0.5);

204

205 end

206

207 % --- Executes during object creation, after setting all properties.

208 function edit3 CreateFcn(hObject, eventdata, handles)

209 % hObject handle to edit2 (see GCBO)

210 % eventdata reserved - to be defined in a future version of MATLAB

211 % handles empty - handles not created until after all CreateFcns called

212

213 % Hint: edit controls usually have a white background on Windows.

214 % See ISPC and COMPUTER.

215 if ispc && isequal(get(hObject,'BackgroundColor'),...

216 get(0,'defaultUicontrolBackgroundColor'))

217 set(hObject,'BackgroundColor','white');

218 end

219

220 function edit4 Callback(hObject, eventdata, handles)

221 % hObject handle to edit4 (see GCBO)

222 % eventdata reserved - to be defined in a future version of MATLAB

APPENDIX B. MATLAB GUI CODE 129

223 % handles structure with handles and user data (see GUIDATA)

224

225 % Hints: get(hObject,'String') returns contents of edit4 as text

226 % str2double(get(hObject,'String')) returns contents of edit4 as a double

227

228 pathloss=str2double(get(handles.edit4,'string'));

229 if isnan(pathloss)

230 errordlg('You must enter a numeric value to path loss exponent',...

231 'Bad Input','modal')

232 set(handles.edit4,'String',2);

233

234 end

235

236 % --- Executes during object creation, after setting all properties.

237 function edit4 CreateFcn(hObject, eventdata, handles)

238 % hObject handle to edit4 (see GCBO)

239 % eventdata reserved - to be defined in a future version of MATLAB

240 % handles empty - handles not created until after all CreateFcns called

241

242 % Hint: edit controls usually have a white background on Windows.

243 % See ISPC and COMPUTER.

244 if ispc && isequal(get(hObject,'BackgroundColor'),...

245 get(0,'defaultUicontrolBackgroundColor'))

246 set(hObject,'BackgroundColor','white');

247 end

248

249 function edit5 Callback(hObject, eventdata, handles)

250 % hObject handle to edit5 (see GCBO)

251 % eventdata reserved - to be defined in a future version of MATLAB

252 % handles structure with handles and user data (see GUIDATA)

253

254 % Hints: get(hObject,'String') returns contents of edit5 as text

255 % str2double(get(hObject,'String')) returns contents of edit5 as a double

256

257 P0=str2double(get(handles.edit5,'string'));

258 if isnan(P0)

259 errordlg('You must enter a numeric value to P0',...

260 'Bad Input','modal')

261 set(handles.edit5,'String',-63.2);

262

263 end

264

265 % --- Executes during object creation, after setting all properties.

266 function edit5 CreateFcn(hObject, eventdata, handles)

267 % hObject handle to edit5 (see GCBO)

268 % eventdata reserved - to be defined in a future version of MATLAB

269 % handles empty - handles not created until after all CreateFcns called

130 Appendix B

270

271 % Hint: edit controls usually have a white background on Windows.

272 % See ISPC and COMPUTER.

273 if ispc && isequal(get(hObject,'BackgroundColor'),...

274 get(0,'defaultUicontrolBackgroundColor'))

275 set(hObject,'BackgroundColor','white');

276 end

277

278 function edit6 Callback(hObject, eventdata, handles)

279 % hObject handle to edit2 (see GCBO)

280 % eventdata reserved - to be defined in a future version of MATLAB

281 % handles structure with handles and user data (see GUIDATA)

282

283 % Hints: get(hObject,'String') returns contents of edit2 as text

284 % str2double(get(hObject,'String')) returns contents of edit2 as a double

285

286 sigma kf=str2double(get(handles.edit6,'string'));

287 if isnan(sigma kf)

288 errordlg('You must enter a numeric value to KF sigma',...

289 'Bad Input','modal')

290 set(handles.edit6,'String',0.1);

291

292 end

293

294 % --- Executes during object creation, after setting all properties.

295 function edit6 CreateFcn(hObject, eventdata, handles)

296 % hObject handle to edit2 (see GCBO)

297 % eventdata reserved - to be defined in a future version of MATLAB

298 % handles empty - handles not created until after all CreateFcns called

299

300 % Hint: edit controls usually have a white background on Windows.

301 % See ISPC and COMPUTER.

302 if ispc && isequal(get(hObject,'BackgroundColor'),...

303 get(0,'defaultUicontrolBackgroundColor'))

304 set(hObject,'BackgroundColor','white');

305 end

306

307 function edit7 Callback(hObject, eventdata, handles)

308 % hObject handle to edit7 (see GCBO)

309 % eventdata reserved - to be defined in a future version of MATLAB

310 % handles structure with handles and user data (see GUIDATA)

311

312 % Hints: get(hObject,'String') returns contents of edit7 as text

313 % str2double(get(hObject,'String')) returns contents of edit7 as a double

314

315 sigma ekf1=str2double(get(handles.edit7,'string'));

316 if isnan(sigma ekf1)

APPENDIX B. MATLAB GUI CODE 131

317 errordlg('You must enter a numeric value to EKF sigma1',...

318 'Bad Input','modal')

319 set(handles.edit7,'String',0.5);

320

321 end

322 % --- Executes during object creation, after setting all properties.

323 function edit7 CreateFcn(hObject, eventdata, handles)

324 % hObject handle to edit7 (see GCBO)

325 % eventdata reserved - to be defined in a future version of MATLAB

326 % handles empty - handles not created until after all CreateFcns called

327

328 % Hint: edit controls usually have a white background on Windows.

329 % See ISPC and COMPUTER.

330 if ispc && isequal(get(hObject,'BackgroundColor'),...

331 get(0,'defaultUicontrolBackgroundColor'))

332 set(hObject,'BackgroundColor','white');

333 end

334

335 function edit8 Callback(hObject, eventdata, handles)

336 % hObject handle to edit4 (see GCBO)

337 % eventdata reserved - to be defined in a future version of MATLAB

338 % handles structure with handles and user data (see GUIDATA)

339

340 % Hints: get(hObject,'String') returns contents of edit4 as text

341 % str2double(get(hObject,'String')) returns contents of edit4 as a double

342 sigma ekf2=str2double(get(handles.edit8,'string'));

343 if isnan(sigma ekf2)

344 errordlg('You must enter a numeric value to EKF sigma2',...

345 'Bad Input','modal')

346 set(handles.edit8,'String',0.2);

347

348 end

349

350 % --- Executes during object creation, after setting all properties.

351 function edit8 CreateFcn(hObject, eventdata, handles)

352 % hObject handle to edit4 (see GCBO)

353 % eventdata reserved - to be defined in a future version of MATLAB

354 % handles empty - handles not created until after all CreateFcns called

355

356 % Hint: edit controls usually have a white background on Windows.

357 % See ISPC and COMPUTER.

358 if ispc && isequal(get(hObject,'BackgroundColor'),...

359 get(0,'defaultUicontrolBackgroundColor'))

360 set(hObject,'BackgroundColor','white');

361 end

362

363

132 Appendix B

364 function edit9 Callback(hObject, eventdata, handles)

365 % hObject handle to edit4 (see GCBO)

366 % eventdata reserved - to be defined in a future version of MATLAB

367 % handles structure with handles and user data (see GUIDATA)

368

369 % Hints: get(hObject,'String') returns contents of edit4 as text

370 % str2double(get(hObject,'String')) returns contents of edit4 as a double

371

372 p11=str2double(get(handles.edit9,'string'));

373 if isnan(p11)

374 errordlg('Enter a numeric value to (1,1) of the transition matrix',...

375 'Bad Input','modal')

376 set(handles.edit9,'String',0.95);

377

378 end

379 % --- Executes during object creation, after setting all properties.

380 function edit9 CreateFcn(hObject, eventdata, handles)

381 % hObject handle to edit4 (see GCBO)

382 % eventdata reserved - to be defined in a future version of MATLAB

383 % handles empty - handles not created until after all CreateFcns called

384

385 % Hint: edit controls usually have a white background on Windows.

386 % See ISPC and COMPUTER.

387 if ispc && isequal(get(hObject,'BackgroundColor'),...

388 get(0,'defaultUicontrolBackgroundColor'))

389 set(hObject,'BackgroundColor','white');

390 end

391

392

393 function edit10 Callback(hObject, eventdata, handles)

394 % hObject handle to edit10 (see GCBO)

395 % eventdata reserved - to be defined in a future version of MATLAB

396 % handles structure with handles and user data (see GUIDATA)

397

398 % Hints: get(hObject,'String') returns contents of edit10 as text

399 % str2double(get(hObject,'String')) returns contents of edit10 as a double

400

401 p12=str2double(get(handles.edit10,'string'));

402 if isnan(p12)

403 errordlg('Enter a numeric value to (1,2) of the transition matrix',...

404 'Bad Input','modal')

405 set(handles.edit10,'String',0.05);

406

407 end

408 % --- Executes during object creation, after setting all properties.

409 function edit10 CreateFcn(hObject, eventdata, handles)

410 % hObject handle to edit10 (see GCBO)

APPENDIX B. MATLAB GUI CODE 133

411 % eventdata reserved - to be defined in a future version of MATLAB

412 % handles empty - handles not created until after all CreateFcns called

413

414 % Hint: edit controls usually have a white background on Windows.

415 % See ISPC and COMPUTER.

416 if ispc && isequal(get(hObject,'BackgroundColor'),...

417 get(0,'defaultUicontrolBackgroundColor'))

418 set(hObject,'BackgroundColor','white');

419 end

420

421 function edit11 Callback(hObject, eventdata, handles)

422 % hObject handle to edit5 (see GCBO)

423 % eventdata reserved - to be defined in a future version of MATLAB

424 % handles structure with handles and user data (see GUIDATA)

425

426 % Hints: get(hObject,'String') returns contents of edit5 as text

427 % str2double(get(hObject,'String')) returns contents of edit5 as a double

428 p21=str2double(get(handles.edit11,'string'));

429 if isnan(p21)

430 errordlg('Enter numeric value to (2,1) of the transition matrix',...

431 'Bad Input','modal')

432 set(handles.edit11,'String',0.10);

433

434 end

435

436 % --- Executes during object creation, after setting all properties.

437 function edit11 CreateFcn(hObject, eventdata, handles)

438 % hObject handle to edit5 (see GCBO)

439 % eventdata reserved - to be defined in a future version of MATLAB

440 % handles empty - handles not created until after all CreateFcns called

441

442 % Hint: edit controls usually have a white background on Windows.

443 % See ISPC and COMPUTER.

444 if ispc && isequal(get(hObject,'BackgroundColor'),...

445 get(0,'defaultUicontrolBackgroundColor'))

446 set(hObject,'BackgroundColor','white');

447 end

448

449 function edit12 Callback(hObject, eventdata, handles)

450 % hObject handle to edit5 (see GCBO)

451 % eventdata reserved - to be defined in a future version of MATLAB

452 % handles structure with handles and user data (see GUIDATA)

453

454 % Hints: get(hObject,'String') returns contents of edit5 as text

455 % str2double(get(hObject,'String')) returns contents of edit5 as a double

456 p22=str2double(get(handles.edit12,'string'));

457 if isnan(p22)

134 Appendix B

458 errordlg('Enter a numeric value to (2,2) of the transition matrix',...

459 'Bad Input','modal')

460 set(handles.edit12,'String',0.90);

461

462 end

463

464 % --- Executes during object creation, after setting all properties.

465 function edit12 CreateFcn(hObject, eventdata, handles)

466 % hObject handle to edit5 (see GCBO)

467 % eventdata reserved - to be defined in a future version of MATLAB

468 % handles empty - handles not created until after all CreateFcns called

469

470 % Hint: edit controls usually have a white background on Windows.

471 % See ISPC and COMPUTER.

472 if ispc && isequal(get(hObject,'BackgroundColor'),...

473 get(0,'defaultUicontrolBackgroundColor'))

474 set(hObject,'BackgroundColor','white');

475 end

476

477 function edit13 Callback(hObject, eventdata, handles)

478 % hObject handle to edit12 (see GCBO)

479 % eventdata reserved - to be defined in a future version of MATLAB

480 % handles structure with handles and user data (see GUIDATA)

481

482 % Hints: get(hObject,'String') returns contents of edit12 as text

483 % str2double(get(hObject,'String')) returns contents of edit12 as a double

484

485 mu ij11=str2double(get(handles.edit13,'string'));

486 if isnan(mu ij11)

487 errordlg('Enter a numeric value to (1,1) of the Model Probabilities',...

488 'Bad Input','modal')

489 set(handles.edit13,'String',0.5);

490

491 end

492 % --- Executes during object creation, after setting all properties.

493 function edit13 CreateFcn(hObject, eventdata, handles)

494 % hObject handle to edit12 (see GCBO)

495 % eventdata reserved - to be defined in a future version of MATLAB

496 % handles empty - handles not created until after all CreateFcns called

497

498 % Hint: edit controls usually have a white background on Windows.

499 % See ISPC and COMPUTER.

500 if ispc && isequal(get(hObject,'BackgroundColor'),...

501 get(0,'defaultUicontrolBackgroundColor'))

502 set(hObject,'BackgroundColor','white');

503 end

504

APPENDIX B. MATLAB GUI CODE 135

505 function edit14 Callback(hObject, eventdata, handles)

506 % hObject handle to edit13 (see GCBO)

507 % eventdata reserved - to be defined in a future version of MATLAB

508 % handles structure with handles and user data (see GUIDATA)

509

510 % Hints: get(hObject,'String') returns contents of edit13 as text

511 % str2double(get(hObject,'String')) returns contents of edit13 as a double

512 mu ij12=str2double(get(handles.edit14,'string'));

513 if isnan(mu ij12)

514 errordlg('Enter a numeric value to (1,2) of the Model Probabilities',...

515 'Bad Input','modal')

516 set(handles.edit14,'String',0.5);

517

518 end

519

520 % --- Executes during object creation, after setting all properties.

521 function edit14 CreateFcn(hObject, eventdata, handles)

522 % hObject handle to edit13 (see GCBO)

523 % eventdata reserved - to be defined in a future version of MATLAB

524 % handles empty - handles not created until after all CreateFcns called

525

526 % Hint: edit controls usually have a white background on Windows.

527 % See ISPC and COMPUTER.

528 if ispc && isequal(get(hObject,'BackgroundColor'),...

529 get(0,'defaultUicontrolBackgroundColor'))

530 set(hObject,'BackgroundColor','white');

531 end

532

533 function edit15 Callback(hObject, eventdata, handles)

534 % hObject handle to edit15 (see GCBO)

535 % eventdata reserved - to be defined in a future version of MATLAB

536 % handles structure with handles and user data (see GUIDATA)

537

538 % Hints: get(hObject,'String') returns contents of edit15 as text

539 % str2double(get(hObject,'String')) returns contents of edit15 as a double

540 Ttarget=str2double(get(handles.edit15,'string'));

541 if isnan(Ttarget)

542 errordlg('You must enter a numeric value to Target sampling',...

543 'Bad Input','modal')

544 set(handles.edit15,'String',0.5);

545

546 end

547

548 % --- Executes during object creation, after setting all properties.

549 function edit15 CreateFcn(hObject, eventdata, handles)

550 % hObject handle to edit15 (see GCBO)

551 % eventdata reserved - to be defined in a future version of MATLAB

136 Appendix B

552 % handles empty - handles not created until after all CreateFcns called

553

554 % Hint: edit controls usually have a white background on Windows.

555 % See ISPC and COMPUTER.

556 if ispc && isequal(get(hObject,'BackgroundColor'),...

557 get(0,'defaultUicontrolBackgroundColor'))

558 set(hObject,'BackgroundColor','white');

559 end

560

561 % --- Executes on button press in Multilateration.

562 function Multilateration Callback(hObject, eventdata, handles)

563 % hObject handle to Multilateration (see GCBO)

564 % eventdata reserved - to be defined in a future version of MATLAB

565 % handles structure with handles and user data (see GUIDATA)

566 if (get(handles.Multilateration,'Value')==1)

567 set(handles.WeightedAv,'enable','off');

568 set(handles.WeightedAv,'Value',0);

569 set(handles.text17,'String', 'RMS Multilateration');

570 else

571 set(handles.WeightedAv,'enable','on');

572 set(handles.WeightedAv,'Value',1);

573 set(handles.text17,'String', 'RMS Weighted Average');

574 end

575 % Hint: get(hObject,'Value') returns toggle state of Multilateration

576

577

578 % --- Executes on button press in WeightedAv.

579 function WeightedAv Callback(hObject, eventdata, handles)

580 % hObject handle to WeightedAv (see GCBO)

581 % eventdata reserved - to be defined in a future version of MATLAB

582 % handles structure with handles and user data (see GUIDATA)

583 if (get(handles.WeightedAv,'Value')==1)

584 set(handles.Multilateration,'enable','off');

585 set(handles.Multilateration,'Value',0);

586 set(handles.text17,'String', 'RMS Weighted Average');

587 else

588 set(handles.Multilateration,'enable','on');

589 set(handles.Multilateration,'Value',1);

590 set(handles.text17,'String', 'RMS Multilateration');

591

592 end

593 % Hint: get(hObject,'Value') returns toggle state of WeightedAv

594

595 % --- Executes on button press in pushbutton1.

596 function pushbutton1 Callback(hObject, eventdata, handles)

597 % hObject handle to pushbutton1 (see GCBO)

598 % eventdata reserved - to be defined in a future version of MATLAB

APPENDIX B. MATLAB GUI CODE 137

599 % handles structure with handles and user data (see GUIDATA)

600

601 set(handles.pushbutton2,'enable','off');

602 set(handles.edit23,'enable','on');

603 set(handles.edit24,'enable','on');

604 set(handles.edit25,'enable','on');

605 set(handles.edit26,'enable','on');

606 sigma shad1=str2double(get(handles.edit1,'string'));

607 std ml=str2double(get(handles.edit2,'string'));

608 T motes=str2double(get(handles.edit3,'string'));

609 Ttarget=str2double(get(handles.edit15,'string'));

610 Groups=get(handles.popupmenu2,'value');

611 pathloss=str2double(get(handles.edit4,'string'));

612 P0=str2double(get(handles.edit5,'string'));

613 route=get(handles.popupmenu3,'value');

614 sigma kf=str2double(get(handles.edit6,'string'));

615 sigma ekf1=str2double(get(handles.edit7,'string'));

616 sigma ekf2=str2double(get(handles.edit8,'string'));

617 p11=str2double(get(handles.edit9,'string'));

618 p12=str2double(get(handles.edit10,'string'));

619 p21=str2double(get(handles.edit11,'string'));

620 p22=str2double(get(handles.edit12,'string'));

621 mu ij11=str2double(get(handles.edit13,'string'));

622 mu ij12=str2double(get(handles.edit14,'string'));

623 pathloss dist=str2double(get(handles.edit27,'string'));

624

625

626 pij=[p11 p12;p21 p22];

627 muij=[mu ij11 mu ij12];

628

629 %while get(handles.pushbutton1,'UserData')==1;

630 cla(handles.axes1,'reset');

631 guidata(hObject,handles);

632

633 if (get(handles.Multilateration,'Value')==1)

634 Multilat=1;

635 else

636 Multilat=0;

637 end

638 if get(handles.radiobutton1,'Value')==1

639 video=1;

640 else

641 video=0;

642 end

643

644 [mu,finish]=TrackingIMMKFandEKF(sigma shad1,std ml,T motes,Ttarget,...

645 Groups,pathloss,pathloss dist, P0,route,sigma kf,sigma ekf1,...

138 Appendix B

646 sigma ekf2,pij,muij,Multilat, video, hObject, eventdata, handles);

647 handles.muProb=mu;

648 if finish ==1

649 set(handles.pushbutton2,'enable','on');

650 end

651 %end

652 guidata(hObject, handles);

653

654 % --- Executes on selection change in popupmenu2.

655 function popupmenu2 Callback(hObject, eventdata, handles)

656 % hObject handle to popupmenu2 (see GCBO)

657 % eventdata reserved - to be defined in a future version of MATLAB

658 % handles structure with handles and user data (see GUIDATA)

659

660 % Hints: contents = get(hObject,'String') returns popupmenu2 contents as

661 %cell array. contents{get(hObject,'Value')} returns selected item

662 %from popupmenu2

663 if get(handles.popupmenu2,'value')==2

664 set(handles.edit3,'String',5);

665 set(handles.edit3,'enable','off');

666 else

667 set(handles.edit3,'String','0.5');

668 set(handles.edit3,'enable','on');

669 end

670

671 % --- Executes during object creation, after setting all properties.

672 function popupmenu2 CreateFcn(hObject, eventdata, handles)

673 % hObject handle to popupmenu2 (see GCBO)

674 % eventdata reserved - to be defined in a future version of MATLAB

675 % handles empty - handles not created until after all CreateFcns called

676

677 % Hint: popupmenu controls usually have a white background on Windows.

678 % See ISPC and COMPUTER.

679 if ispc && isequal(get(hObject,'BackgroundColor'),...

680 get(0,'defaultUicontrolBackgroundColor'))

681 set(hObject,'BackgroundColor','white');

682 end

683

684 % --- Executes on selection change in popupmenu3.

685 function popupmenu3 Callback(hObject, eventdata, handles)

686 % hObject handle to popupmenu3 (see GCBO)

687 % eventdata reserved - to be defined in a future version of MATLAB

688 % handles structure with handles and user data (see GUIDATA)

689

690 % Hints: contents = get(hObject,'String') returns popupmenu3 contents as

691 % cell array. contents{get(hObject,'Value')} returns selected item from popupmenu3

692

APPENDIX B. MATLAB GUI CODE 139

693

694 % --- Executes during object creation, after setting all properties.

695 function popupmenu3 CreateFcn(hObject, eventdata, handles)

696 % hObject handle to popupmenu3 (see GCBO)

697 % eventdata reserved - to be defined in a future version of MATLAB

698 % handles empty - handles not created until after all CreateFcns called

699

700 % Hint: popupmenu controls usually have a white background on Windows.

701 % See ISPC and COMPUTER.

702 if ispc && isequal(get(hObject,'BackgroundColor'),...

703 get(0,'defaultUicontrolBackgroundColor'))

704 set(hObject,'BackgroundColor','white');

705 end

706

707

708 % --- Executes on button press in pushbutton2.

709 function pushbutton2 Callback(hObject, eventdata, handles)

710 % hObject handle to pushbutton2 (see GCBO)

711 % eventdata reserved - to be defined in a future version of MATLAB

712 % handles structure with handles and user data (see GUIDATA)

713 modeProb();

714

715

716 function edit23 Callback(hObject, eventdata, handles)

717 % hObject handle to edit23 (see GCBO)

718 % eventdata reserved - to be defined in a future version of MATLAB

719 % handles structure with handles and user data (see GUIDATA)

720

721 % Hints: get(hObject,'String') returns contents of edit23 as text

722 % str2double(get(hObject,'String')) returns contents of edit23 as a double

723

724

725 % --- Executes during object creation, after setting all properties.

726 function edit23 CreateFcn(hObject, eventdata, handles)

727 % hObject handle to edit23 (see GCBO)

728 % eventdata reserved - to be defined in a future version of MATLAB

729 % handles empty - handles not created until after all CreateFcns called

730

731 % Hint: edit controls usually have a white background on Windows.

732 % See ISPC and COMPUTER.

733 if ispc && isequal(get(hObject,'BackgroundColor'),...

734 get(0,'defaultUicontrolBackgroundColor'))

735 set(hObject,'BackgroundColor','white');

736 end

737

738 function edit24 Callback(hObject, eventdata, handles)

739 % hObject handle to edit24 (see GCBO)

140 Appendix B

740 % eventdata reserved - to be defined in a future version of MATLAB

741 % handles structure with handles and user data (see GUIDATA)

742

743 % Hints: get(hObject,'String') returns contents of edit24 as text

744 % str2double(get(hObject,'String')) returns contents of edit24 as a double

745

746

747 % --- Executes during object creation, after setting all properties.

748 function edit24 CreateFcn(hObject, eventdata, handles)

749 % hObject handle to edit24 (see GCBO)

750 % eventdata reserved - to be defined in a future version of MATLAB

751 % handles empty - handles not created until after all CreateFcns called

752

753 % Hint: edit controls usually have a white background on Windows.

754 % See ISPC and COMPUTER.

755 if ispc && isequal(get(hObject,'BackgroundColor'),...

756 get(0,'defaultUicontrolBackgroundColor'))

757 set(hObject,'BackgroundColor','white');

758 end

759

760 function edit25 Callback(hObject, eventdata, handles)

761 % hObject handle to edit25 (see GCBO)

762 % eventdata reserved - to be defined in a future version of MATLAB

763 % handles structure with handles and user data (see GUIDATA)

764

765 % Hints: get(hObject,'String') returns contents of edit25 as text

766 % str2double(get(hObject,'String')) returns contents of edit25 as a double

767

768 % --- Executes during object creation, after setting all properties.

769 function edit25 CreateFcn(hObject, eventdata, handles)

770 % hObject handle to edit25 (see GCBO)

771 % eventdata reserved - to be defined in a future version of MATLAB

772 % handles empty - handles not created until after all CreateFcns called

773

774 % Hint: edit controls usually have a white background on Windows.

775 % See ISPC and COMPUTER.

776 if ispc && isequal(get(hObject,'BackgroundColor'),...

777 get(0,'defaultUicontrolBackgroundColor'))

778 set(hObject,'BackgroundColor','white');

779 end

780

781 function edit26 Callback(hObject, eventdata, handles)

782 % hObject handle to edit26 (see GCBO)

783 % eventdata reserved - to be defined in a future version of MATLAB

784 % handles structure with handles and user data (see GUIDATA)

785

786 % Hints: get(hObject,'String') returns contents of edit26 as text

APPENDIX B. MATLAB GUI CODE 141

787 % str2double(get(hObject,'String')) returns contents of edit26 as a double

788

789

790 % --- Executes during object creation, after setting all properties.

791 function edit26 CreateFcn(hObject, eventdata, handles)

792 % hObject handle to edit26 (see GCBO)

793 % eventdata reserved - to be defined in a future version of MATLAB

794 % handles empty - handles not created until after all CreateFcns called

795

796 % Hint: edit controls usually have a white background on Windows.

797 % See ISPC and COMPUTER.

798 if ispc && isequal(get(hObject,'BackgroundColor'),...

799 get(0,'defaultUicontrolBackgroundColor'))

800 set(hObject,'BackgroundColor','white');

801 end

802

803

804 % --- Executes when figure1 is resized.

805 function figure1 ResizeFcn(hObject, eventdata, handles)

806 % hObject handle to figure1 (see GCBO)

807 % eventdata reserved - to be defined in a future version of MATLAB

808 % handles structure with handles and user data (see GUIDATA)

809

810

811 % --- Executes on button press in radiobutton1.

812 function radiobutton1 Callback(hObject, eventdata, handles)

813 % hObject handle to radiobutton1 (see GCBO)

814 % eventdata reserved - to be defined in a future version of MATLAB

815 % handles structure with handles and user data (see GUIDATA)

816

817 % Hint: get(hObject,'Value') returns toggle state of radiobutton1

818

819

820

821 function edit27 Callback(hObject, eventdata, handles)

822 % hObject handle to edit27 (see GCBO)

823 % eventdata reserved - to be defined in a future version of MATLAB

824 % handles structure with handles and user data (see GUIDATA)

825

826 % Hints: get(hObject,'String') returns contents of edit27 as text

827 % str2double(get(hObject,'String')) returns contents of edit27 as a double

828 pathloss dist=str2double(get(handles.edit27,'string'));

829 if isnan(pathloss dist)

830 errordlg('You must enter a numeric value to path loss exponent',...

831 'Bad Input','modal')

832 set(handles.edit27,'String',3);

833

142 Appendix B

834 end

835

836 % --- Executes during object creation, after setting all properties.

837 function edit27 CreateFcn(hObject, eventdata, handles)

838 % hObject handle to edit27 (see GCBO)

839 % eventdata reserved - to be defined in a future version of MATLAB

840 % handles empty - handles not created until after all CreateFcns called

841

842 % Hint: edit controls usually have a white background on Windows.

843 % See ISPC and COMPUTER.

844 if ispc && isequal(get(hObject,'BackgroundColor'),...

845 get(0,'defaultUicontrolBackgroundColor'))

846 set(hObject,'BackgroundColor','white');

847 end

Listing B.2: MATLAB code of TrackingIMMKFandEKF.m

1 function [MU,finish] = Tracking IMM KF and EKF(sigma shad1,std ML,...

2 Tmotes,Ttarget,Groups,pathloss,pathloss dist,P 0,route,sigma kf,...

3 sigma ekf1,sigma ekf2,pij,muij,Multilat,video,hObject,eventdata, handles)

4

5 %-----------------------Tracking simulator -------------------------------

6 %--------------------------------General scenario-------------------------

7 %In this simulator we track a car using multilateration technique, that is

8 %moving between different streets in a urban area.

9

10 %The scenario is a set of streets of 20m of width, 4m between anchor nodes

11 %(x) and 12 parking slots per side

12

13 %

14

15 %----------------------------STREET PARAMETERS-----------------------------

16 Anchors Street = 24; %Number of total Anchors (12 per side)

17 distAnch = 4; %distance between anchors

18 WidthStreet=20;

19 start x = 2; %this would be the distance from the reference where

20 %the parking lots begin

21 lengthStreet = 2*start x +distAnch*((Anchors Street/2)-1);

22 %--

23

24 %------------------------SCENARIO AREA -----------------------------------

25 block horiz = 4; %total of horiz "block"

26 block vert = 3; %total of vert "block"

27 cr=(block horiz-1)*(block vert-1); %number of croisses

28 streets=cr;%Number of streets

29 Scenario Width = block horiz*lengthStreet+WidthStreet*(block horiz-1);

APPENDIX B. MATLAB GUI CODE 143

30 Scenario Height = block vert*lengthStreet+WidthStreet*(block vert-1);

31 %---

32

33 %-------------------------ANCHORS PARAMETERS-----------------------------

34 Ngroups=Groups; %number of groups of activated intercalated Anchors

35

36 % %--------------------DEFINE THE POSITIONS OF THE ANCHORS -----------------

37 % %We associate the set of anchors of one street to a number that identifies

38 % %this street.

39 %

40 AnchPos=AnchorsPosDefinition(Anchors Street,block vert,block horiz,...

41 lengthStreet,distAnch,WidthStreet,start x);

42

43 %---------------------DEFINE THE CROSSINGS IN MATRICES--------------------

44 %As we have 6 crs in a 4x3 blocks:

45 cr1=[lengthStreet lengthStreet+WidthStreet;...

46 2*(lengthStreet+WidthStreet) 2*lengthStreet+WidthStreet];

47 cr2=[2*lengthStreet+WidthStreet 2*(lengthStreet+WidthStreet);...

48 2*(lengthStreet+WidthStreet) 2*lengthStreet+WidthStreet];

49 cr3=[3*lengthStreet+2*WidthStreet 3*(lengthStreet+WidthStreet);...

50 2*(lengthStreet+WidthStreet) 2*lengthStreet+WidthStreet];

51

52 cr4=[lengthStreet lengthStreet+WidthStreet;...

53 lengthStreet+WidthStreet lengthStreet];

54 cr5=[2*lengthStreet+WidthStreet 2*(lengthStreet+WidthStreet);...

55 lengthStreet+WidthStreet lengthStreet];

56 cr6=[3*lengthStreet+2*WidthStreet 3*(lengthStreet+WidthStreet);...

57 lengthStreet+WidthStreet lengthStreet];

58

59 %--------------------------TARGET PARAMETERS------------------------------

60 %Now let's start assuming that a mobile node M travels along a certain path

61 %with constant velocity. The following parameters are required:

62 switch route

63 case 1

64 load 'route1 target route'

65 case 2

66 load 'route2 target route'

67 case 3

68 load 'route3 target route'

69 case 4

70 load 'route4 target route'

71 case 5

72 load 'route5 target route'

73 case 6

74 load 'route6 target route'

75 end

76

144 Appendix B

77 %The target route is previously computed with a sampling period of

78 %T target=0.01. Then some samples are taken from all the route:

79 T=Ttarget;

80 Target samples=T/0.01;

81 T motes=Tmotes; %sampling time in seconds of the active motes.

82 %Every T motes sg, all active anchors send a message to the target.

83 T shift = T motes/Ngroups; %Time shift between the first and second group

84 %of a total of Ngroups

85 s=(0:Ngroups-1)*T shift; %This vector contains all the shifts between

86 %the group1 and the other anchors groups

87 s=roundn(s,-1);

88 anchors ML = 4; %number of considered anchors for multilateration computation

89

90 %-------------------------PATH LOSS MODEL PARAMETERS-----------------------

91 sigma shad = sigma shad1; %shadow fading variance in dB as the power of

92 %the noise added to the received power

93 P0 = P 0; %Received power at 1 m used for the received power model in dBm

94 gamma=pathloss;

95 gamma dist=pathloss dist;

96 %--

97

98 %---------------------KALMAN PARAMETERS AND COEFFICIENTS-----------------

99 std ml=std ML; %standard deviation in m due to the multilateration computation

100 var ml=std mlˆ2;

101 models=2;

102 V=cell(1,models); %covariance of the white-gaussian acceleration noise

103 %of the state model

104 sigma a=sigma kf; %acceleration variance in velocity for KF

105 sigma a1=sigma ekf1; %acceleration variance in velocity for EKF

106 sigma a2=sigma a1; %acceleration variance in turn rate for EKF

107 sigma a3=sigma ekf2;

108 V{1}=diag([sigma a,sigma a]);

109 V{2}=diag([sigma a1,sigma a2,sigma a3]);

110 R=[var ml 0;0 var ml]; %measurement noise covariance matrix

111 x jk=cell(1,models);%This cell used in the IMM algorithm contains

112 %the state vectors of both KF and EKF which are updated in each time step

113 %using the IMM

114 P jk=cell(1,models);%This cell used in the IMM algorithm contains

115 %the state covariance matrices for both KF and EKF which are updated in each time step

116 %using the IMM

117 P jk{1}=[var ml var ml/T shift 0 0; var ml/T shift 2*var ml/T shiftˆ2 ...

118 0 0; 0 0 var ml var ml/T shift; 0 0 var ml/T shift 2*var ml/T shiftˆ2];

119 P jk{2}=[var ml var ml/T shift 0 0 0; var ml/T shift 2*var ml/T shiftˆ2 ...

120 0 0 0; 0 0 var ml var ml/T shift 0; 0 0 var ml/T shift ...

121 2*var ml/T shiftˆ2 0;0 0 0 0 0.01];

122 %Below the initial state covariance matrix for the KF

123 P KF=P jk{1};

APPENDIX B. MATLAB GUI CODE 145

124 %Below the initial state covariance matrix for the EKF

125 P EKF=P jk{2};
126 H=cell(1,models);

127 H{1}=[1 0 0 0;0 0 1 0];

128 H{2}=[1 0 0 0 0;0 0 1 0 0];

129 mu ij=muij;

130 p ij=pij;

131 F=cell(1,models);

132 F{1}=[1 T shift 0 0;0 1 0 0;0 0 1 T shift ;0 0 0 1]; %KF transition matrix

133 norm ML=[];

134 norm KF=[];

135 norm EKF=[];

136 norm IMM=[];

137 %--

138

139 ml=1; %Target estimated samples

140 count=0;

141 n=1;

142

143 %------------PARAMETERS FOR GENERATING THE MOVIE ------

144 if (video==1)

145 fps=3;

146 fn = strcat('Tmotes ',num2str(T motes),'sg ',num2str(Ngroups),...

147 'group route',num2str(route),'Sigma shad',num2str(sigma shad)','dB.mov');

148 MakeQTMovie('start',fn);

149 MakeQTMovie('quality', 1);

150 end

151

152

153 %----------------------------BEGIN THE TRACKING ---------------------------

154

155 for x=1:Target samples:length(target state)

156 %Now all the received powers of all the anchors are gathered by the

157 %target. We use the simple path loss model:

158 %Pr(dBm)=P0(dBm)-10·gamma·log10(d i), where d i is the euclidean

159 %distance from the mobile target to anchor i

160

161 %Below we check if the target is inside a cr

162

163 if ((cr1(1,1)≤target state(1,x) && target state(1,x)≤cr1(1,2)) && ...

164 (cr1(2,2)≤target state(3,x) && target state(3,x)≤cr1(2,1)) | | ...

165 (cr2(1,1)≤target state(1,x) && target state(1,x)≤cr2(1,2)) && ...

166 (cr2(2,2)≤target state(3,x) && target state(3,x)≤cr2(2,1)) | | ...

167 (cr3(1,1)≤target state(1,x) && target state(1,x)≤cr3(1,2)) && ...

168 (cr3(2,2)≤target state(3,x) && target state(3,x)≤cr3(2,1)) | | ...

169 (cr4(1,1)≤target state(1,x) && target state(1,x)≤cr4(1,2)) && ...

170 (cr4(2,2)≤target state(3,x) && target state(3,x)≤cr4(2,1)) | | ...

146 Appendix B

171 (cr5(1,1)≤target state(1,x) && target state(1,x)≤cr5(1,2)) && ...

172 (cr5(2,2)≤target state(3,x) && target state(3,x)≤cr5(2,1)) | | ...

173 (cr6(1,1)≤target state(1,x) && target state(1,x)≤cr6(1,2)) && ...

174 (cr6(2,2)≤target state(3,x) && target state(3,x)≤cr6(2,1)))

175

176 %Next we need to check wether in which cr is located the target

177 %-----------------if the target is cr the cr 1 ---------------

178 if ((cr1(1,1)≤target state(1,x)) && (target state(1,x)≤cr1(1,2)) && ...

179 (cr1(2,2)≤target state(3,x)) && (target state(3,x)≤cr1(2,1)))

180

181 a=find(abs(s-count)<1/1000);

182

183 if (length(a)>0) %when count has a value of one of the activation times

184 %of the different set of Anchors

185 Pos Anchors=[cr1(1,1)-start x cr1(1,2)+start x cr1(1,1)-start x ...

186 cr1(1,2)+start x; cr1(2,1) cr1(2,1) cr1(2,2) ...

187 cr1(2,2)];

188

189 [estimated pos target(:,ml),ActiveAnch]= Multilateration(target state(:,x),...

190 Pos Anchors,AnchPos,P0,gamma,gamma dist,sigma shad,anchors ML,...

191 Anchors Street,1,a,Ngroups,distAnch,Multilat);

192 activated=1;

193 else

194 activated=0;

195 end

196 end

197

198 %----------------------if the target is cr the cr 2-------

199 if ((cr2(1,1)≤target state(1,x) && target state(1,x)≤cr2(1,2)) && ...

200 (cr2(2,2)≤target state(3,x) && target state(3,x)≤cr2(2,1)))

201

202 a=find(abs(s-count)<1/1000);

203

204 if (length(a)>0) %when count has a value of one of the activation times

205 %of the different set of Anchors

206 Pos Anchors=[cr2(1,1)-start x cr2(1,2)+start x cr2(1,1)-start x ...

207 cr2(1,2)+start x; cr2(2,1) cr2(2,1) cr2(2,2) ...

208 cr2(2,2)];

209

210 [estimated pos target(:,ml),ActiveAnch]= Multilateration(target state(:,x),...

211 Pos Anchors,AnchPos,P0,gamma,gamma dist,sigma shad,anchors ML,...

212 Anchors Street,1,a,Ngroups,distAnch, Multilat);

213 activated=1;

214 else

215 activated=0;

216 end

217 end

APPENDIX B. MATLAB GUI CODE 147

218

219 %----------------------if the target is cr the cr 3----------

220 if ((cr3(1,1)≤target state(1,x) && target state(1,x)≤cr3(1,2)) && ...

221 (cr3(2,2)≤target state(3,x) && target state(3,x)≤cr3(2,1)))

222 a=find(abs(s-count)<1/1000);

223

224 if (length(a)>0) %when count has a value of one of the activation times

225 %of the different set of Anchors

226 Pos Anchors=[cr3(1,1)-start x cr3(1,2)+start x cr3(1,1)-start x ...

227 cr3(1,2)+start x; cr3(2,1) cr3(2,1) cr3(2,2) ...

228 cr3(2,2)];

229

230 [estimated pos target(:,ml),ActiveAnch]= Multilateration(target state(:,x),...

231 Pos Anchors,AnchPos,P0,gamma,gamma dist,sigma shad,anchors ML,...

232 Anchors Street,1,a,Ngroups,distAnch,Multilat);

233 activated=1;

234 else

235 activated=0;

236 end

237 end

238 %----------------------if the target is cr the cr 4-------

239 if ((cr4(1,1)≤target state(1,x) && target state(1,x)≤cr4(1,2)) && ...

240 (cr4(2,2)≤target state(3,x) && target state(3,x)≤cr4(2,1)))

241 a=find(abs(s-count)<1/1000);

242

243 if (length(a)>0) %when count has a value of one of the activation times

244 %of the different set of Anchors

245 Pos Anchors=[cr4(1,1)-start x cr4(1,2)+start x cr4(1,1)-start x ...

246 cr4(1,2)+start x; cr4(2,1) cr4(2,1) cr4(2,2) ...

247 cr4(2,2)];

248

249 [estimated pos target(:,ml),ActiveAnch]= Multilateration(target state(:,x),...

250 Pos Anchors, AnchPos,P0,gamma,gamma dist,sigma shad,anchors ML,...

251 Anchors Street,1,a,Ngroups,distAnch,Multilat);

252 activated=1;

253 else

254 activated=0;

255 end

256 end

257 %----------------------if the target is cr the cr 5-----------

258 if ((cr5(1,1)≤target state(1,x) && target state(1,x)≤cr5(1,2)) && ...

259 (cr5(2,2)≤target state(3,x) && target state(3,x)≤cr5(2,1)))

260 a=find(abs(s-count)<1/1000);

261

262 if (length(a)>0) %when count has a value of one of the activation times

263 %of the different set of Anchors

264 Pos Anchors=[cr5(1,1)-start x cr5(1,2)+start x cr5(1,1)-start x ...

148 Appendix B

265 cr5(1,2)+start x; cr5(2,1) cr5(2,1) cr5(2,2) ...

266 cr5(2,2)];

267

268 [estimated pos target(:,ml),ActiveAnch]= Multilateration(target state(:,x),...

269 Pos Anchors,AnchPos,P0,gamma,gamma dist,sigma shad,anchors ML,...

270 Anchors Street,1,a,Ngroups,distAnch,Multilat);

271 activated=1;

272 else

273 activated=0;

274 end

275 end

276 %----------------------if the target is cr the cr 6-------

277

278 if ((cr6(1,1)≤target state(1,x) && target state(1,x)≤cr6(1,2)) && ...

279 (cr6(2,2)≤target state(3,x) && target state(3,x)≤cr6(2,1)))

280

281 a=find(abs(s-count)<1/1000);

282

283 if (length(a)>0) %when count has a value of one of the activation times

284 %of the different set of Anchors

285 Pos Anchors=[cr6(1,1)-start x cr6(1,2)+start x cr6(1,1)-start x ...

286 cr6(1,2)+start x; cr6(2,1) cr6(2,1) cr6(2,2) ...

287 cr6(2,2)];

288

289 [estimated pos target(:,ml),ActiveAnch]= Multilateration(target state(:,x),...

290 Pos Anchors,AnchPos,P0,gamma,gamma dist,sigma shad,anchors ML,...

291 Anchors Street,1,a,Ngroups,distAnch,Multilat);

292 activated=1;

293 else

294 activated=0;

295 end

296 end

297

298 else %If the target is not in a cr

299

300 %-------------------PERFORMING MULTILATERATION IN THE STREETS------------

301 a=find(abs(s-count)<1/1000);

302

303 if (length(a)>0) %when count has a value of one of the activation times

304 %of the different set of Anchors

305 [estimated pos target(:,ml),ActiveAnch]= Multilateration(target state(:,x),...

306 AnchPos,AnchPos,P0,gamma,gamma dist,sigma shad,anchors ML,...

307 Anchors Street,0,a,Ngroups,distAnch,Multilat);

308 activated=1;

309

310 else

311 activated=0;

APPENDIX B. MATLAB GUI CODE 149

312 end

313 end

314

315 if size(estimated pos target,2)==1

316 %KF, EKF and IMM initializations to the first measurement

317 KF estimates=zeros(4,1);

318 EKF estimates=zeros(5,1);

319 KF estimates([1 3],:)=estimated pos target;

320 EKF estimates([1 3],:)=estimated pos target;

321 x jk{1}=KF estimates;

322 x jk{2}=EKF estimates;

323 x combupd1(:,1)=EKF estimates;

324 MU(:,1)=mu ij;

325 norm ML(ml)=norm([target state(1,x);target state(3,x)]-...

326 [estimated pos target(1,1);estimated pos target(2,1)]);

327 norm KF(ml)=norm([target state(1,x);target state(3,x)]-...

328 [KF estimates(1,1);KF estimates(3,1)]);

329 norm EKF(ml)=norm([target state(1,x);target state(3,x)]-...

330 [EKF estimates(1,1) ;EKF estimates(3,1)]);

331 norm IMM(ml)=norm([target state(1,x);target state(3,x)]-...

332 [x combupd1(1,1);x combupd1(3,1)]);

333

334 end

335

336 if activated==1

337 if ml≥2

338 %-------------------APPLY KALMAN FILTER--------------------------------

339 [x updKF,P updKF,x predKF,P predKF]=...

340 Kalman(KF estimates(:,ml-1),P KF,F{1},H{1},V{1},R,...
341 estimated pos target(:,ml),T shift);

342 P KF=P updKF;

343 KF estimates(:,ml)=x updKF;

344

345 %-----------------APPLY EXTENDED KALMAN FILTER---------------------------------

346 A = chooseTransitionMatrix(EKF estimates(:,ml-1),T shift);

347 F{2}=A;
348 [x updEKF,P updEKF,x predEKF,P predEKF]=...

349 ExtendedKalman(EKF estimates(:,ml-1),P EKF,F{2},H{2},V{2},R,...
350 estimated pos target(:,ml),T shift);

351 P EKF=P updEKF;

352 EKF estimates(:,ml)=x updEKF;

353

354 %-----------------APPLY INTERACTIVE MULTIPLE MODEL-CT-------------------

355 A = chooseTransitionMatrix(x jk{2},T shift);

356 F{2}=A;
357 [x combupd,P combupd,x combpred,P combpred,x jk1,P jk1,mu ijk1]= ...

358 immct(mu ij,p ij,x jk,P jk,F,H,V,R,estimated pos target(:,ml),T shift);

150 Appendix B

359 mu ij=mu ijk1;

360 x jk=x jk1;

361 P jk=P jk1;

362 x combupd1(:,ml)=x combupd;

363 MU(:,ml)=mu ij;

364 %--------------------------PLOTTING RESULTS ----------------------------

365 axes(handles.axes1);

366 h1=plot(AnchPos(1,1:length(AnchPos)),...

367 AnchPos(2,1:length(AnchPos)),'x','markersize',5);

368 hold on

369 set(handles.axes1, 'XLim', [0 4*lengthStreet+3*WidthStreet]);

370 set (handles.axes1, 'YLim', [0 3*lengthStreet+2*WidthStreet]);

371 xlabel('distance in m');

372 ylabel('distance in m');

373 h2=plot(target state(1,x),target state(3,x),'ˆ',...

374 'Color',[47;79;79]/255,'markersize',5);

375 h3=plot(ActiveAnch(1,1:length(ActiveAnch)),ActiveAnch(2,...

376 1:length(ActiveAnch)),'x','Color',[9;249;17]/255,'markersize',5);

377 h4=plot(estimated pos target(1,ml), estimated pos target(2,ml),...

378 '.r','markersize',20);

379 %'Color',[192;192;192]/255);

380 h5=plot(KF estimates(1,1:ml), KF estimates(3,1:ml),'k','LineWidth',2);

381 h6=plot(EKF estimates(1,1:ml),EKF estimates(3,1:ml),...

382 'Color',[208;32;144]/255,'LineWidth',2);%[255;130;171]/255);

383 h7=plot(x combupd1(1,1:ml),x combupd1(3,1:ml),'Color',...

384 [85;26;139]/255,'LineWidth',2);%[153;102;204]/255);

385 legend([h1 h2 h3 h4 h5 h6 h7],'Parking Nodes','True track',...

386 'Active Nodes', 'measurements', 'KF','EKF','IMM-CT','Location','Best');

387 MakeQTMovie('addplot');

388 norm ML(ml)=norm ML(ml-1)+norm([target state(1,x);target state(3,x)]-...

389 [estimated pos target(1,ml);estimated pos target(2,ml)]);

390 norm KF(ml)=norm KF(ml-1)+norm([target state(1,x);target state(3,x)]-...

391 [KF estimates(1,ml);KF estimates(3,ml)]);

392 norm EKF(ml)=norm EKF(ml-1)+norm([target state(1,x);target state(3,x)]-...

393 [EKF estimates(1,ml);EKF estimates(3,ml)]);

394 norm IMM(ml)=norm IMM(ml-1)+norm([target state(1,x);target state(3,x)]-...

395 [x combupd1(1,ml);x combupd1(3,ml)]);

396 set(handles.edit23,'String',num2str(norm ML(ml)/ml));

397 set(handles.edit24,'String',num2str(norm KF(ml)/ml));

398 set(handles.edit25,'String',num2str(norm EKF(ml)/ml));

399 set(handles.edit26,'String',num2str(norm IMM(ml)/ml));

400

401 end

402 if a==length(s)

403 s=s+T motes;

404 s=roundn(s);

405 end

APPENDIX B. MATLAB GUI CODE 151

406 ml=ml+1;

407 elseif activated==0

408 axes(handles.axes1);

409 plot(AnchPos(1,1:length(AnchPos)),AnchPos(2,1:length(AnchPos)),...

410 'x','markersize',5);

411 hold on

412 set(handles.axes1, 'XLim', [0 4*lengthStreet+3*WidthStreet])

413 set (handles.axes1, 'YLim', [0 3*lengthStreet+2*WidthStreet]);

414 plot(target state(1,x),target state(3,x),'ˆ','Color',[47;79;79]/255,...

415 'markersize',5);

416 if (video==1)

417 MakeQTMovie('addplot');

418 end

419 end

420 count=count+T;

421 count=roundn(count);

422 n=n+1;

423 end

424

425 MakeQTMovie('framerate', fps);

426 MakeQTMovie('finish');

427 finish = 1;

428 RMS ML=norm ML/sqrt(ml);

429 RMS KF=norm KF/sqrt(ml);

430 RMS EKF=norm EKF/sqrt(ml);

431 RMS IMM=norm IMM/sqrt(ml);

Listing B.3: MATLAB code of Multilateration.m

1 %-----------Performing Multilateration technique out of the crossings------------

2 function [estimated pos,AllActive]=Multilateration(target state,AnchorPos,...

3 AllAnchors,P0,gamma,gamma dist,sigma shad,anchors ML,Anchors Street,...

4 incrossing,Ngroup,Ngroups,distAnch,Multilat)

5

6 if incrossing ==1 %If the target is in a crossing, compute multilateration

7 %with those anchor nodes located at the both sides in x.

8

9 target=[target state(1);target state(3)];

10 %Next we choose the four neares active anchors of horizontal sides

11 AnchPos= [AnchorPos(1,1)-(distAnch*(Ngroups-Ngroup))...

12 AnchorPos(1,2)+(distAnch*(Ngroup-1))...

13 AnchorPos(1,3)-(distAnch*(Ngroup-1))...

14 AnchorPos(1,4)+(distAnch*(Ngroups-Ngroup));...

15 AnchorPos(2,1) AnchorPos(2,2) AnchorPos(2,3) AnchorPos(2,4)];

16

17 dist = sqrt((target(1,1)-AnchPos(1,:)).ˆ2+(target(2,1)- AnchPos(2,:)).ˆ2);

152 Appendix B

18 Pr=P0-(10*gamma*log10(dist))+sqrt(sigma shad)*randn(1,length(dist));

19

20 if Multilat==1

21 %Variable d rssi is the estimated distance from RSSI to each of the

22 %anchors considered to compute multilateration

23 d rssi= 10.ˆ((P0-Pr(1,:))/(10*gamma dist));

24 estimated pos = fminunc(@(pos target est) posfun(pos target est,...

25 AnchPos,d rssi),[0;0]);

26 elseif Multilat==0

27 %WEIGHTED AVERAGE METHOD FOR POSITIONING INSTEAD OF MULTILATERATION.

28 %IN PRACTICE WEIGHTED AVERAGE IS BETTER (PRECIS) THAN MULTILATERATIO

29 weightedCoeffs = weightedAverage(Pr); %It is a Nx1 vector (N=anchors ml)

30 estimated pos= [AnchPos(1,:);AnchPos(2,:)]*weightedCoeffs;

31 end

32

33 elseif incrossing==0 %If the target is in a certain street

34

35 target=[target state(1);target state(3)];

36 Anchors id=find(AnchorPos(3,:)==target state(5));

37 PosAnch=AnchorPos(:,Anchors id);

38 %The following switch defines a matrix with triangle geometry of the

39 %Active Anchors Positions

40 switch Ngroup

41 case 1

42 c=[Ngroup:2*Ngroups:length(PosAnch) 2*Ngroups:2*Ngroups:length(PosAnch)];

43 c=sort(c);

44 SubPosAnch=PosAnch(:,c);

45 otherwise

46 c=[2*Ngroup-1:2*Ngroups:length(PosAnch) 2*Ngroup-2:2*Ngroups:length(PosAnch)];

47 c=sort(c);

48 SubPosAnch=PosAnch(:,c);

49 end

50

51 dist = sqrt((target(1,1)-SubPosAnch(1,:)).ˆ2+(target(2,1)-SubPosAnch(2,:)).ˆ2);

52 Pr=P0-(10*gamma*log10(dist))+sqrt(sigma shad)*randn(1,length(dist));

53

54 %We associate in a matrix P an ID to each anchor node and to the

55 %corresponding received power from that anchor node

56 P = zeros(2,length(Pr));

57 P(1,:) = Pr;

58 P(2,:) = SubPosAnch(3,:);

59

60 %Now it is going to compute multilateration with those anchors ML

61 %specified with the highest received power:

62

63 Pr max=zeros(2,anchors ML); %first row contains

64 cont up=0;

APPENDIX B. MATLAB GUI CODE 153

65 cont down=0;

66 A=P;

67 for kk=1:anchors ML

68 if (cont down < round(anchors ML/2))

69 [i,j]=max(A(1,:));

70 Pr max(1,kk)=i;

71 Pr max(2,kk)=j;

72 A(1,j)=-200;

73 cont down=cont down+1;

74 elseif (cont up < Anchors Street-round(anchors ML/2)) && ...

75 (cont down ≥ round(anchors ML/2))

76 if target state(4) <0 | | target state(2)<0

77 if mod(Ngroup,2)==1

78 [a,b]=max(A(1,2:2:length(A)));

79 b=2*b;

80 elseif mod(Ngroup,2)==0

81 [a,b]=max(A(1,1:2:length(A)));

82 b=2*b-1;

83 end

84 else

85 if mod(Ngroup,2)==0

86 [a,b]=max(A(1,2:2:length(A)));

87 b=2*b;

88 elseif mod(Ngroup,2)==1

89 [a,b]=max(A(1,1:2:length(A)));

90 b=2*b-1;

91 end

92 end

93 Pr max(1,kk)=a;

94 Pr max(2,kk)=b;

95 A(1,b)=-200;

96 cont up=cont up+1;

97 end

98 end

99

100 if Multilat==1

101 d rssi= 10.ˆ((P0-Pr max(1,:))/(10*gamma dist));

102 %----Below multilateration is solved optimizated without constraints ----

103 estimated pos = fminunc(@(pos target est) posfun(pos target est,...

104 SubPosAnch(:,Pr max(2,:)),d rssi),[0;0]);

105 elseif Multilat==0 %WEIGHTED AVERAGE METHOD

106 SubPosAnch=SubPosAnch(:,Pr max(2,:));

107 weightedCoeffs = weightedAverage(Pr max(1,:)); %It is a Nx1 vector(N=anchors ml)

108 estimated pos= [SubPosAnch(1,:);SubPosAnch(2,:)]*weightedCoeffs;

109

110 end

111 end

154 Appendix B

112

113 switch Ngroup

114 case 1

115 c=[Ngroup:2*Ngroups:length(AllAnchors) 2*Ngroups:2*Ngroups:length(AllAnchors)];

116 c=sort(c);

117 AllActive=AllAnchors(:,c);

118 otherwise

119 c=[2*Ngroup-1:2*Ngroups:length(AllAnchors) 2*Ngroup-2:2*Ngroups:length(AllAnchors)];

120 c=sort(c);

121 AllActive=AllAnchors(:,c);

122 end

Listing B.4: MATLAB code of weightedAverage.m

1 %Weighted Average Received power:

2 %This scripts returns coefficients as the weighted received power defined

3 %as follows:

4 % alfa n = Rssi n/sum(Rssi(1:N)) where n is in a range between 1 to N and

5 %N is the number of considered anchors to perform the positioning.

6 %Rssi is a 1xN vector containing the received powers of all the N anchors.

7

8 function weighted coeffs = weightedAverage(Rssi)

9

10 alfas = zeros(1,length(Rssi));

11

12 Rssi sum = sum(Rssi);

13

14 for m=1:length(alfas)

15 alfas(m)= Rssi(m)/Rssi sum;

16 end

17

18 weighted coeffs=alfas';

Listing B.5: MATLAB code of posfun.m

1 function F=pos fun(vec pos,pos anclas,medida)

2

3 % pos anclas es la matriz donde cada columna son las componentes x e y de

4 % los anclas;

5 % medida es un vector donde cada fila es la medida tomada por cada ancla;

6

7

8 F=0;

9

10 for kk=1:size(pos anclas,2)

APPENDIX B. MATLAB GUI CODE 155

11

12 F = F + (sqrt((pos anclas(1,kk)-vec pos(1))ˆ2+(pos anclas(2,kk)-...

13 vec pos(2))ˆ2)-medida(kk))ˆ2;

14

15

16 end

Listing B.6: MATLAB code of Kalman.m

1 function [x updKF,P updKF,x predKF,P predKF,likelihoodKF]=...

2 Kalman(x 0j,P 0j,F,H,V,R,z,T)

3

4 [k kf,S,P predKF,P updKF]=genKalmancoefskf(R,P 0j,F,H,T,V);

5 %generate online the Kalman coefficient, the state covariance matrices

6 %prediction and the update for each received measurement z.

7

8 x predKF=F*x 0j;

9 error kf=z-H*x predKF;

10 %correction=k kf(:,:,x)*error kf;

11 correction=k kf*error kf;

12 x updKF=correction+F*x 0j;

13 if nargout >4

14 likelihoodKF=(1/((2*pi)ˆ0.5*det(S)ˆ0.5))*...

15 exp(-0.5*(z-x predKF([1 3],:))'*inv(S)*(z-x predKF([1 3],:)));

16 end

Listing B.7: MATLAB code of genKalmancoefskf.m

1 function [k,S,P pred,P upd] = gen Kalman coefs kf(R,P,F,H,T,V)

2

3 tau=[(1/2)*Tˆ2 0;T 0;0 (1/2)*Tˆ2;0 T]; %--> This suppose to be the

4 %known matrix. It takes into account certain variations in the velocity,

5 %in practice the velocity never is constant. In the signal model it would

6 %be related to the acceleration vector with the following vector state

7 %model:

8 %x(k+1)=Fx(k)+tau*a, where a is a 2x1 white gaussian acceleration noise

9 %vector, contempling the small changes in velocity in x and in y.

10 %x is a vector of dimensions 4x1 having both the position and velocity in

11 %both dimensions, x and y.

12 %F is the known transition matrix

13 %The following is the covariance matrix of the state equation, or the also

14 %known as process noise covariance matrix

15 Q = tau*V*tau';

16 %k = zeros(4,2,N);

17

156 Appendix B

18 %for n=1:N

19 P pred=F*P*F'+Q; %Predicted State covariance

20 S=H*P pred*H'+R; %Residual covariance

21 %k(:,:,n)=P*H'*inv(S);

22 k=P pred*H'*inv(S);

23 P upd=P pred-k*S*k'; %Updated State covariance

24 %end

Listing B.8: MATLAB code of ExtendedKalman.m

1 function [x updEKF,P updEKF,x predEKF,P predEKF,likelihoodEKF]=...

2 ExtendedKalman(x 0j,P 0j,F,H,V,R,z,T)

3

4 [k ekf,S,P predEKF,P updEKF]=genKalmancoefsekf(R,x 0j,P 0j,H,T,V);

5 %generate offline the Kalman coefficients and state covariance matrices

6 %prediction and updates

7

8 x predEKF=F*x 0j;

9 error ekf=z-H*x predEKF;

10 %correction=k ekf(:,:,x)*error ekf;

11 correction=k ekf*error ekf;

12 x updEKF=correction+F*x 0j;

13

14 if nargout>4

15 likelihoodEKF=(1/((2*pi)ˆ0.5*det(S)ˆ0.5))*...

16 exp(-0.5*(z-x predEKF([1 3],:))'*inv(S) * (z-x predEKF([1 3],:)));

17 end

Listing B.9: MATLAB code of genKalmancoefsekf.m

1 function [k,S,P pred,P upd] = gen Kalman coefs ekf(R,x,P,H,T,V)

2 %---

3 %The kalman coefficients are 4x1 which corresponds to Kx,Kv x,Ky,Kv y

4 %If we compute them off-line before kalman

5 %operation we will have a matrix with dimensions 4xN.

6 %C: Covariance 2x2 matrix of the observation white gaussian noise

7 %T: sampling time:

8 %N: number of kalman set of coeficients, one set for each kalman iteration

9 %sigma a: variation in the velocity. We assume that between the (k ? 1)th

10 %and kth timestep the truck undergoes a constant acceleration of ak that

11 %is normally distributed, with mean 0 and standard deviation ?a

12 %---

13

14

15 tau=[(1/2)*Tˆ2 0 0;T 0 0;0 (1/2)*Tˆ2 0;0 T 0;0 0 T]; %--> This suppose to be the

APPENDIX B. MATLAB GUI CODE 157

16 %known matrix. It take into account certain variations in the velocity,

17 %in practice the velocity never is constant. In the signal model it would

18 %be related to the acceleration vector with the following vector state

19 %model:

20

21 %x(k+1)=Fx(k)+tau*a, where a is a 2x1 vector, taking into account the

22 %small acceleration values in x and in y --> a= [a x;a y] that makes small

23 %variations in velocity. x is a vector of dimensions 4x1 having both the

24 %position and velocity in both dimensions, x and y.

25 %A is the transition matrix

26

27 %Initial covariance matrix of the state equation

28 Q = tau*V*tau';

29 w=x(5,1);

30

31 if abs(w) ≤ 10ˆ-12

32 df=[1 T 0 0 -(1/2)*Tˆ2*x(4);...

33 0 1 0 0 -T*x(4);...

34 0 0 1 T (1/2)*Tˆ2*x(2);...

35 0 0 0 1 T*x(2);...

36 0 0 0 0 1];

37 else

38 coswt = cos(w*T);

39 coswto = 1-cos(w*T);

40 coswtopw = -coswto/w;

41 sinwt = sin(w*T);

42 sinwtpw = sinwt/w;

43

44 f omega1=((coswt*T*x(2))/w)-((sinwt*x(2))/wˆ2)-...

45 (sinwt*T*x(4))/w-((-1+coswt)*x(4))/wˆ2;

46

47 f omega2=-(sinwt*T*x(2))-(coswt*T*x(4));

48

49 f omega3=(sinwt*T*x(2))/w-((1-coswt)*x(2))/wˆ2+...

50 (coswt*T*x(4))/w-(sinwt*x(4))/wˆ2;

51

52 f omega4=(coswt*T*x(2))-(sinwt*T*x(4));

53

54

55 df=[1 sinwtpw 0 coswtopw f omega1 ;...

56 0 coswt 0 -sinwt f omega2;...

57 0 -coswtopw 1 sinwtpw f omega3;...

58 0 sinwt 0 coswt f omega4; ...

59 0 0 0 0 1];

60

61 end

62 %df is the jacobian matrix of the coordinated turn model

158 Appendix B

63 P pred=df*P*df'+Q; %state prediction covariance

64 S=H*P pred*H'+R; %Residual covariance, or innovation covariance

65 k=P pred*H'*inv(S); %Filter gain

66 P upd=P pred-k*S*k';%Update state covariance

Listing B.10: MATLAB code of immct.m

1 function [x combupd,P combupd,x combpred,P combpred,x jk1,P jk1,...

2 mu ijk1,x updKF,x updEKF,x predKF,x predEKF]=...

3 imm ct(mu ij,p ij,x jk,P jk,F,H,V,R,z,T)

4 %Interactive Multiple Model Estimator for the coordinated turn model

5 %(IMM-CT)

6 %We have two models or filters:

7 %Kalman filter with a process noise covariance V KF stored in the cell V{1}
8 %and

9 %measurement noise covariance stored in the cell R{1}.
10 % Extended Kalman Filter with a process noise covariance V EKF stored in

11 % V{2}and measurement noise covariance stored in the cell R{2}.
12 %The inputs in the algorithm IMM at time step k are:

13 % - the r state vector and r state covariance matrix of previous time

14 % step. r is the number of filters. These are x jk and P jk as a cell

15 % array.

16 % - the prior model probabilities for each model. It is a vector

17 % with dimensions 1xr.

18 % - The models transition probabilities p ij which reflect the transition

19 % probabilities of a Markov Chain. It has the dimensions rxr.

20 % - The same inputs than the filters: Transitions matrices, process

21 % noise covariance, measurement noise covariance, all of them are

22 % cell arrays with dimensions 1xr.

23

24 %The outputs of the algorithm at time step k are:

25 % - The updated combined state vector and state covariance: x combupd

26 % and P combupd

27 % - the updated state and covariance for each model: x jk1 and P jk1.

28 % That is, the updated state vector and state covariance computed by

29 % each of the different filters. Again they are organized in 1xr cell

30 % array.

31 % - the updated model probabilities: mu ijk1 at next time step

32 % - Also if it is needed, the combined predicted state vector and

33 % state covariance: x combpred and P combpred

34

35 %We are going to work with 1xr cell arrays, where cell 1x1 we can stored

36 %whatever we want (vectors or matrices with any dimension).

37

38 %The IMM can be divided in three parts:

39 % - Interaction/mixing: It computes the mixing probabilities from the

APPENDIX B. MATLAB GUI CODE 159

40 % model probabilities, and the mixed initial condition for the filter

41 % matched.

42 % - Filters Prediction and Update (mode matched-filtering)

43 % - Mode probability update and mixing probability calculation

44 % - State estimate and covariance combination

45

46 nmodels = size(mu ij,2);

47 dim KF=4; %the state vector for the KF is 4 (x,vx,y,vy)

48 dim EKF=5; %the state vector for the KF is 5 (x,vx,y,vy,w)

49 %----------------------INTERACTION/MIXING-----------------------------

50 % Normalizing factors for mixing probabilities

51 c j = zeros(1,nmodels);

52 for j = 1:nmodels

53 for i = 1:nmodels

54 c j(j) = c j(j) + p ij(i,j).*mu ij(i);

55 end

56 end

57 % Mixing probabilities

58 MU ij = zeros(nmodels,nmodels);

59 for i = 1:nmodels

60 for j = 1:nmodels

61 MU ij(i,j) = p ij(i,j) * mu ij(i) / c j(j); %MU ij is the

62 %updated mixing probability from the previous model

63 %probability mu ij

64 end

65 end

66 % Calculate the mixed state mean for each filter

67 x 0j = cell(1,nmodels);

68 x 0j{1}=zeros(dim EKF,1);

69 x 0j{2}=zeros(dim EKF,1);

70 for j = 1:nmodels

71 ind=[1 2 3 4]';

72 for i = 1:nmodels

73 x 0j{j}(ind) = x 0j{j}(ind) + x jk{i}(ind)*MU ij(i,j);

74 ind=[1 2 3 4 5]';

75 end

76 end

77

78 % Calculate the mixed state covariance for each filter

79 P 0j = cell(1,nmodels);

80 P 0j{1}=zeros(dim EKF,dim EKF);

81 P 0j{2}=zeros(dim EKF,dim EKF);

82

83 for j = 1:nmodels

84 ind=[1 2 3 4]';

85 for i = 1:nmodels

86 P 0j{j}(ind,ind)=P 0j{j}(ind,ind)+ MU ij(i,j)*(P jk{i} + ...

160 Appendix B

87 (x jk{i}(ind)-x 0j{j}(ind))*(x jk{i}(ind)-x 0j{j}(ind))');
88 ind=[1 2 3 4 5]';

89 end

90 end

91 %----------------------END INTERACTION/MIXING-----------------------------

92 %----------------------MODE-MATCHED FILTERING-----------------------------

93 ind=[1 2 3 4]';

94 [x updKF,P updKF,x predKF,P predKF,likelihood KF]=...

95 Kalman(x 0j{1}(ind),P 0j{1}(ind,ind),F{1},H{1},V{1},R,z,T);
96 ind=[1 2 3 4 5]';

97 [x updEKF,P updEKF,x predEKF,P predEKF,likelihoodEKF]=...

98 ExtendedKalman(x 0j{2}(ind),P 0j{2}(ind,ind),F{2},H{2},V{2},R,z,T);
99

100 %----Combined Prediction of the state vector and the state covariance-----

101 likelihood = [likelihood KF likelihoodEKF];

102 % Predicted state mean

103 x combpred = [x predKF;0]*mu ij(1)+x predEKF*mu ij(2);

104 % Predicted state covariance

105 P predKF1=zeros(dim EKF,dim EKF);

106 P predKF1(1:length(P predKF),1:length(P predKF))=P predKF;

107 P predKF= P predKF1;

108 P combpred=mu ij(1)*(P predKF+([x predKF;0]-x combpred)*...

109 ([x predKF;0]-x combpred)')+...

110 mu ij(2)*(P predEKF+(x predEKF-x combpred)*(x predEKF-x combpred)');

111

112 c = sum(likelihood.*c j);

113 mu ijk1 = c j.*likelihood/c; % Update the model probabilities

114

115 %--------Combined Update of the state vector and the state covariance---

116 x jk1=cell(1,nmodels);

117 x jk1{1}= [x updKF;0];

118 x jk1{2}=x updEKF;

119 P jk1=cell(1,nmodels);

120 P jk1{1}=P updKF;

121 P jk1{2}=P updEKF;

122

123 x combupd= zeros(dim EKF,1);

124 P combupd=zeros(dim KF,dim KF);

125

126 % Updated state mean

127 for j = 1:nmodels

128 x combupd = x combupd + mu ijk1(j)*x jk1{j};
129 end

130 x combupd1=x combupd(1:dim KF);

131 ind=[1 2 3 4]';

132 % Updated state covariance

133 for j = 1:nmodels

APPENDIX B. MATLAB GUI CODE 161

134 P combupd=P combupd+ mu ijk1(j)*(P jk1{j}+(x jk1{j}(ind)-x combupd1)*...

135 (x jk1{j}(ind)-x combupd1)');

136 if j==1

137 P combupd1=zeros(dim EKF,dim EKF);

138 P combupd1(1:length(P combupd),1:length(P combupd))=P combupd;

139 P combupd=P combupd1;

140 x combupd1=x combupd;

141 ind=[1 2 3 4 5]';

142 end

143 end

144

145 %

162 Appendix B

Appendix C

ARID Navigator Java Code

The ARID NAVIGATOR is developed in Java code using the Java IDE Netbeans. The set of

Java codes used for the navigator development are:

• Rssidemo.java: this is the main class. This code is able to recollect the frames coming

from the base sensor node via serial USB port. Then the received power source is read

with a tinyos function from the received packet. Then the positioning computation is done

in this code. The position computation is send to the Window class. This code is mainly

developed by Albert Bel who also have participated in the XALOC project.

• Window.java: this class is the application window of the navigator having all the swing

Java objects (buttons, checkboxes, layeredpanes and so on). The purpose of this class is

basically to draw on a map the parkings icons as well as the user’s position. The map can

be downloaded from internet or loaded locally depending of the cold start and warm start

state buttons. To draw the user’s position icons and the parkings icons the jLayeredPane

class is used.

• ParkingSensor.java: this class is used to create objects that store the UTM coordinates of

every parking sensor. This class has been useful to create a list of parkings, with objects

instantiated from this class in each position of the parking list.

• KalmanFilter.java: this class implements the one dimension Kalman filter.

Listing C.1: JAVA code of RssiDemo.java

1

2 package mymaps;

3

163

164 Appendix C

4 /*

5 * "Copyright (c) 2005 The Regents of the University of California.

6 * All rights reserved.

7 *

8 * Permission to use, copy, modify, and distribute this software and

9 * its documentation for any purpose, without fee, and without written

10 * agreement is hereby granted, provided that the above copyright

11 * notice, the following two paragraphs and the author appear in all

12 * copies of this software.

13 *

14 * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY

15 * PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

16 * DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS

17 * DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN

18 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

19 *

20 * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

21 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

22 * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS

23 * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO

24 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

25 *

26 */

27

28 /*

29 * This is a modified version of TestSerial.java, from apps/tests/TestSerial

30 * from TinyOS 2.x (www.tinyos.net)

31 */

32

33 /**

34 * Java-side application for testing the RSSI demo

35 *

36 * @author Phil Levis <pal@cs.berkeley.edu>

37 * @author Dimas Abreu Dutra <dimas@dcc.ufmb.br>

38 * @date April 11 2008

39 */

40

41

42 import net.tinyos.message.*;

43 import net.tinyos.util.*;

44 import net.tinyos.packet.*;

45 import java.util.Arrays;

46 import java.io.*;

47 import javax.swing.Timer;

48 import java.awt.event.*;

49

50 public class RssiDemo implements MessageListener {

APPENDIX C. ARID NAVIGATOR JAVA CODE 165

51

52 private MoteIF moteIF;

53 public Window win;

54

55 public RssiDemo(MoteIF moteIF) {
56 this.moteIF = moteIF;

57 this.moteIF.registerListener(new RssiMsg(), this);

58 win = new Window();

59 win.setVisible(true);

60 }
61 // variables de control de programa

62 public int num places=18; //nodes totals

63 public double dist threshold=2.000; //threshold distancia

64 public String string pot ="potencia3.txt";

65 public String string coop="valor coop3.txt";

66 public String string pos="coord projectades3.txt";

67 public String string pos klmn="coord kalman3.txt";

68 public int tipus window=2; // 1-> lectura 2-> dBm 3->lineal

69 public double gamma1=5;

70 public double gamma2=12;

71 public double gamma3 = 18;

72 public double velocidadAlta=2; // threshold de velocidad en m/s

73 public double velocidadBaja=0.75; // threshold de velocidad en m/s

74 public double gamma=0;

75 //public double gamma=5;//dbm o lectura P*75%-> 2.25 P*50%-> 3 P*75%-> 6

76 //public double gamma=0.277;//factor de reduccio P*75%-> 0.115

77 //P*50%-> 0.277 P*25%-> 0.555

78 public int tipus lectura=2; // 1-> lectura directa 2->dBm 3-> watts

79 public int tipus cooperacio=2; //1-> cooperants fixos 2->threshold

80 public int tipus potencia=4; // 1-> lectura 2-> lectura WS 3-> dBm iris 4->dBm

81 //WS 5-> linial iris 6-> linial WS

82 public double threshold = 86; //threshold potencia

83 public double x mob=0, R=25, V=3,v=(double)0*1000.0/3600.0; //R is the

84 // measurement noise covariance and V is the acceleration random value variance

85 public int num coop=4; //numero nodes cooperants

86 public int delay seconds=2500; //every 2.5 sg we perform positioning

87 //variables de control del programa

88

89 public double suma=0;

90 public double suma inv=0;

91 public int k=0, num iterations=0;//num iterations without position measurements

92 public double x[] = new double[num places];

93 public double y[] = new double[num places];

94 public double x mobil=0.0;

95 public double y mobil=0.0;

96 public double x0=0.0;

97 public double y0=0.0;

166 Appendix C

98 public double x1=0.0;

99 public double y1=0.0;

100 public double pendent=0.0;

101 public double b=0.0;

102 public double a1=0.0;

103 public double a2=1;

104 public double d kalman = 0.0;

105 public double step=-10.0;public int kk=0;public int cont coop=0;

106 public double beta= 0;

107 public double posicions usades[] = new double[num places];

108 public double potencia[] = new double[num places];

109 public double pow rx[] = new double[num places];

110 public double distancia=0.0;

111 public float posCordinates[] = new float[2];

112 public double coord x[] = new double [num places];

113 public double coord y[] = new double [num places];

114 public int rx msg=0;

115

116 public int mesura=1, temp=1;

117

118 public double[] updpos; //updated position and velocity in x ith kalman

119 public double y mob=0,x mob ant=0,y mob ant=0,x mob pant=0,y mob pant=0;

120 public KalmanFilter KF= new KalmanFilter();

121

122

123 public void messageReceived(int to, Message message) {
124 RssiMsg msg = (RssiMsg) message;

125 int source = message.getSerialPacket().get header src();

126 if(source≥1 && source≤18){
127 rx msg++;

128 switch(tipus potencia){
129 case 1: //lectura directa

130 potencia[source-1]= msg.get rssi();

131 pow rx[source-1]=msg.get rssi();

132 break;

133 case 2: //lectura directa WS

134 potencia[source-1]= msg.get rssi()*3.1;

135 pow rx[source-1]=msg.get rssi()*3.1;

136 break;

137 case 3: //dBm iris

138 potencia[source-1]= (msg.get rssi()-91)*(-1);

139 pow rx[source-1]=(msg.get rssi()-91)*(-1);

140 break;

141 case 4: //dBm WS

142 try{
143 potencia[source-1]= (msg.get rssi()*3.1-98)*(-1);

144

APPENDIX C. ARID NAVIGATOR JAVA CODE 167

145 pow rx[source-1]=(msg.get rssi()*3.1-98)*(-1);

146 //System.out.println("source good: "+ String.valueOf(source));

147 // System.out.println("msg type good"+ String.valueOf(msg.AM TYPE));

148 }catch(Exception e){
149 System.out.println("source: "+ String.valueOf(source));

150 System.out.println("msg type"+ String.valueOf(msg.AM TYPE));

151 }
152 break;

153 case 5: // lineal iris

154 potencia[source-1]= Math.pow(10,(((msg.get rssi()-91)-30)/10.0));

155 pow rx[source-1]=Math.pow(10,(((msg.get rssi()-91)-30)/10.0));

156 break;

157 case 6: // lineal WS

158 potencia[source-1]= Math.pow(10,(((msg.get rssi()*3.1-98)-30)/10.0));

159 pow rx[source-1]=Math.pow(10,(((msg.get rssi()*3.1-98)-30)/10.0));

160 break;

161 }
162

163 try{
164 FileWriter fr = new FileWriter(string pot,true);

165 PrintWriter salida=new PrintWriter(fr);

166 salida.println(source + " " + potencia[source-1]);

167 salida.close();

168 }
169

170 catch(java.io.IOException ioex){}
171

172 }
173 coord x[0]=(double)426064.21;

174 coord y[0]=(double)4594717.32;

175 coord x[1]=(double)426070.39;

176 coord y[1]=(double)4594724.20;

177 coord x[2]=(double)426060.76;

178 coord y[2]=(double)4594720.39;

179 coord x[3]=(double)426066.66;

180 coord y[3]=(double)4594727.57;

181 coord x[4]=(double)426057.03;

182 coord y[4]=(double)4594723.72;

183 coord x[5]=(double)426062.95;

184 coord y[5]=(double)4594730.92;

185 coord x[6]=(double)426053.30;

186 coord y[6]=(double)4594727.05;

187 coord x[7]=(double)426059.24;

188 coord y[7]=(double)4594734.28;

189 coord x[8]=(double)426049.56;

190 coord y[8]=(double)4594730.38;

191 coord x[9]=(double)426055.53;

168 Appendix C

192 coord y[9]=(double)4594737.63;

193 coord x[10]=(double)426045.83;

194 coord y[10]=(double)4594733.70;

195 coord x[11]=(double)426051.82;

196 coord y[11]=(double)4594740.98;

197 coord x[12]=(double)426042.10;

198 coord y[12]=(double)4594737.03;

199 coord x[13]=(double)426048.11;

200 coord y[13]=(double)4594744.33;

201 coord x[14]=(double)426038.37;

202 coord y[14]=(double)4594740.36;

203 coord x[15]=(double)426044.40;

204 coord y[15]=(double)4594747.69;

205 coord x[16]=(double)426034.63;

206 coord y[16]=(double)4594743.68;

207 coord x[17]=(double)426040.69;

208 coord y[17]=(double)4594751.04;

209 /*coord x[18]=(double)426030.9;

210 coord y[18]=(double)4594747.01;

211 coord x[19]=(double)426036.98;

212 coord y[19]=(double)4594754.39;*/

213 x1=(double) (coord x[0]+coord x[1])/2.0;

214 y1=(double) (coord y[0]+coord y[1])/2.0;

215 x0=(double) (coord x[16]+coord x[17])/2.0;

216 y0=(double) (coord y[16]+coord y[17])/2.0;

217 pendent=((double) (y1-y0)/(x1-x0));

218 b=y0-(x0*pendent);

219 a1=-pendent;

220 //System.out.println("pendent: "+pendent+"b: "+b+"a1: "+a1+"y1: "+y1);

221 distancia=Math.sqrt((Math.pow((x1-x0),2))+(Math.pow((y1-y0),2)));

222 if(source≥1 && source≤18){
223 System.out.println("Rssi " + source + ": " + potencia[source-1]);

224 }
225

226 ActionListener temporitzador=new ActionListener()

227 {
228 public void actionPerformed(ActionEvent evento) {
229 //System.out.println(" rx msg: "+rx msg);

230 Arrays.sort(potencia);

231 cont coop=0;

232 int cont=0;

233 kk=0;

234 x mobil=0;

235 y mobil=0;

236 suma=0;

237 suma inv=0;

238 for (k=0;k<num places;k++)

APPENDIX C. ARID NAVIGATOR JAVA CODE 169

239 {
240 switch (tipus lectura){
241 case 1: //lectura

242 switch (tipus cooperacio){
243 case 1: //cooperants fixos

244 if (potencia[num places-k-1]>0){
245 while (pow rx[kk]!=potencia[num places-k-1]){
246 kk++;

247 }
248 x[cont coop]=coord x[kk];

249 y[cont coop]=coord y[kk];

250 cont coop++;

251 posicions usades[kk]=1;

252 kk=0;

253 }break;
254 case 2: //power threshold

255 if (potencia[num places-k-1]>threshold){
256 while (pow rx[kk]!=potencia[num places-k-1]){
257 kk++;

258 }
259 x[cont coop]=coord x[kk];

260 y[cont coop]=coord y[kk];

261 cont coop++;

262 posicions usades[kk]=1;

263 kk=0;

264 }break;
265 }break;
266 case 2: //dBm watts

267 if(potencia[k]==0){
268 cont++;

269 }
270 switch (tipus cooperacio){
271 case 1: //cooperants fixos

272 if (potencia[k]>0){
273 while (pow rx[kk]!=potencia[k]){
274 kk++;

275 }
276 x[cont coop]=coord x[kk];

277 y[cont coop]=coord y[kk];

278 cont coop++;

279 posicions usades[kk]=1;

280 kk=0;

281 }break;
282 case 2: //power threshold

283 if (potencia[k]<threshold && potencia[k]>0){
284 while (pow rx[kk]!=potencia[k]){
285 kk++;

170 Appendix C

286 }
287 x[cont coop]=coord x[kk];

288 y[cont coop]=coord y[kk];

289 cont coop++;

290 posicions usades[kk]=1;

291 kk=0;

292 }break;
293 }break;
294 case 3: //dBm watts

295 if(potencia[k]==0){
296 cont++;

297 }
298 switch (tipus cooperacio){
299 case 1: //cooperants fixos

300 if (potencia[k]>0){
301 while (pow rx[kk]!=potencia[k]){
302 kk++;

303 }
304 x[cont coop]=coord x[kk];

305 y[cont coop]=coord y[kk];

306 cont coop++;

307 posicions usades[kk]=1;

308 kk=0;

309 }break;
310 case 2: //power threshold

311 if (potencia[k]<threshold && potencia[k]>0){
312 while (pow rx[kk]!=potencia[k]){
313 kk++;

314 }
315 x[cont coop]=coord x[kk];

316 y[cont coop]=coord y[kk];

317 cont coop++;

318 posicions usades[kk]=1;

319 kk=0;

320 }break;
321 }break;
322

323 }
324 }
325

326 try{
327 FileWriter ffr = new FileWriter(string coop,true);

328 PrintWriter sortida pos=new PrintWriter(ffr);

329 sortida pos.println(posicions usades[0]+ " " +posicions usades[1]+ " " +

330 posicions usades[2]+" " +posicions usades[3]+" " +posicions usades[4]+

331 " " +posicions usades[5]+" " +posicions usades[6]+" " +

332 posicions usades[7]+" " +posicions usades[8]+" " +posicions usades[9]+

APPENDIX C. ARID NAVIGATOR JAVA CODE 171

333 " " +posicions usades[10]+" " +posicions usades[11]);

334 sortida pos.close();

335 }
336 catch(java.io.IOException ioex){}
337

338 if (cont coop==0 && rx msg!=0)

339 {
340 switch(tipus lectura){
341 case 1: //lectura

342 kk=0;

343 while (pow rx[kk]!=potencia[num places-1]){
344 kk++;

345 }
346 x[cont coop]=coord x[kk];

347 y[cont coop]=coord y[kk];

348 posicions usades[kk]=1;

349 kk=0;

350 break;

351 case 2: //dBm

352 k=0;

353 while (potencia[k]==0){
354 k++;

355 }
356 while (potencia[k]!=pow rx[kk]){
357 kk++;

358 }
359 x[cont coop]=coord x[kk];

360 y[cont coop]=coord y[kk];

361 posicions usades[kk]=1;

362 kk=0;

363 break;

364

365 }
366 cont coop=1;

367 }
368 if (cont coop!=0)

369 {
370 //System.out.println(" cont coop: "+cont coop);

371 if (num coop<cont coop){
372 cont coop=num coop;

373 }
374

375 switch (tipus lectura){
376 case 1: //lectura directa

377 for (k=0;k<cont coop;k++){
378 suma=suma+potencia[num places-k-1];

379 }break;

172 Appendix C

380 case 2: //dBm watts

381 for (k=cont;k<cont+cont coop;k++){
382 //System.out.println("k: "+k+" cont coop: "+cont coop);

383 suma=suma+potencia[k];

384 suma inv=suma inv+(1.0/potencia[k]);

385 }break;
386 case 3: //watts

387 for (k=cont;k<cont+cont coop;k++){
388 //System.out.println("k: "+k+" cont coop: "+cont coop);

389 suma=suma+potencia[k];

390

391 }break;
392

393 }
394

395 switch (tipus lectura){
396 case 1: //lectura directa

397 for (k=0;k<cont coop;k++){
398 beta=((double)potencia[num places-k-1])/((double)suma);

399 x mobil=(double)x mobil+beta*x[k];

400 y mobil=(double)y mobil+beta*y[k];

401 }break;
402 case 2: //dBm watts

403 for (k=cont;k<cont+cont coop;k++){
404 beta=((double)suma/potencia[k])/((double)suma*suma inv);

405 x mobil=(double)x mobil+beta*x[k-cont];

406 y mobil=(double)y mobil+beta*y[k-cont];

407

408 }break;
409 case 3:

410 for (k=cont;k<cont+cont coop;k++){
411 beta=((double)potencia[k])/((double)suma);

412 x mobil=(double)x mobil+beta*x[k-cont];

413 y mobil=(double)y mobil+beta*y[k-cont];

414

415 }break;
416 }
417

418 x mob=(double) (x mobil+(((b-(x mobil*a1)-(y mobil*a2))/

419 ((Math.pow(a1,2)+Math.pow(a2,2))))*a1));

420 y mob=(double) (y mobil+(((b-(x mobil*a1)-(y mobil*a2))/

421 (Math.pow(a1,2)+Math.pow(a2,2)))*a2));

422 }
423

424 try

425 {
426 FileWriter fww = new FileWriter(string pos,true);

APPENDIX C. ARID NAVIGATOR JAVA CODE 173

427 PrintWriter sortidab=new PrintWriter(fww);

428 sortidab.println(x mob + " " + y mob);

429 sortidab.close();

430 }
431 catch(java.io.IOException ioex){}
432 if(rx msg==0){ //if there is not measurements every 2.5 sg

433 num iterations++;

434 }
435 else{
436 num iterations=0;

437 }
438 if (num iterations>2){
439 x mob=0;

440 y mob=0;

441 mesura=1;

442 for (k=0;k<num places;k++){
443 potencia[k]=0;

444 pow rx[k]=0;

445 }
446 }
447 if (x mob!=0 & y mob!=0){
448 d kalman=Math.sqrt(Math.pow((x mob-x0),2)+(Math.pow((y mob-y0),2)));

449 if (x mob<x0)

450 {
451 d kalman=-d kalman;

452 v=-v;

453 }
454 else if(x mob==x0)

455 {
456 if (y mob<y0)

457 {
458 d kalman=-d kalman;

459 v=-v;

460 }
461 }
462

463 if ((mesura==1) | | (num iterations>2)) {
464 KF = new KalmanFilter(d kalman,v,(double)delay seconds/1000.0,R);

465 mesura=0;

466 num iterations=0;

467 }
468

469 updpos=KF.kalman(KF.KFestimates, V,R,d kalman);

470 x mob=x0+updpos[0]*(x1-x0)/distancia;

471 y mob=y0+updpos[0]*(y1-y0)/distancia;

472 }
473 if (Math.sqrt(Math.pow((x mob-x mob ant),2)+

174 Appendix C

474 Math.pow((y mob-y mob ant),2))<dist threshold)

475 {
476 x mob pant=x mob ant;

477 y mob pant=y mob ant;

478 }
479 else if (x mob!=0)

480 {
481 x mob pant=x mob;

482 y mob pant=y mob;

483 }
484 y mob ant=y mob pant;

485 x mob ant=x mob pant;

486

487 step++;

488

489 System.out.println("Posicion despues KF: coordenada x: " +

490 x mob + " coordenada y: " + y mob);

491 KF.KFestimates[0]=updpos[0];

492 KF.KFestimates[1]=updpos[1];

493 if ((Math.abs(updpos[1]) >velocidadBaja)&&

494 (Math.abs(updpos[1]) <velocidadAlta)){
495 gamma = gamma2;

496 }
497 else if (Math.abs(updpos[1]) >velocidadAlta){
498 gamma=gamma3;

499 }
500 else{
501 gamma=gamma1;

502 }
503 try

504 {
505 FileWriter fww = new FileWriter(string pos klmn,true);

506 PrintWriter sortidab=new PrintWriter(fww);

507 sortidab.println(x mob pant + " " + y mob pant);

508 sortidab.close();

509 }
510 catch(java.io.IOException ioex){}
511

512 try

513 {
514 if ((!win.jButton1.isEnabled()) && (!win.jButton3.isEnabled()))

515 {
516 win.startNavigator(x mob pant, y mob pant, pow rx, updpos[1]);

517

518 }
519 }catch (Exception e)

520 {

APPENDIX C. ARID NAVIGATOR JAVA CODE 175

521 System.err.println("objeto window no existe");

522 }
523 switch (tipus window){
524 case 1: //lectura directa

525 for (k=0;k<num places;k++)

526 {
527 if (pow rx[k]!=0){
528 pow rx[k]=pow rx[k]-gamma;

529 }
530 potencia[k]=pow rx[k];

531 posicions usades[k]=0;

532 }break;
533 case 2: //dBm

534 for (k=0;k<num places;k++)

535 {
536 if (pow rx[k]!=0){
537 pow rx[k]=pow rx[k]+gamma;

538 }
539 potencia[k]=pow rx[k];

540 posicions usades[k]=0;

541 }break;
542 case 3: //lineal

543 for (k=0;k<num places;k++)

544 {
545 pow rx[k]=pow rx[k]*Math.exp(-gamma*delay seconds/1000.0);

546 potencia[k]=pow rx[k];

547 posicions usades[k]=0;

548 }break;
549 }
550 rx msg=0;

551

552 }
553

554 };
555 if (temp==1){
556 new Timer(delay seconds, temporitzador).start();

557 temp=0;

558 }
559

560 }
561 public float[] getcoordinates(){
562 return posCordinates;

563 }
564 private static void usage() {
565 System.err.println("usage: RssiDemo [-comm <source>]");

566 }
567

176 Appendix C

568 public static void main(String[] args) throws Exception {
569 String source = null;

570 if (args.length == 2) {
571 if (!args[0].equals("-comm")) {
572 usage();

573 System.exit(1);

574 }
575 source = args[1];

576 }
577 else if (args.length != 0) {
578 usage();

579 System.exit(1);

580 }
581

582 PhoenixSource phoenix;

583

584 if (source == null) {
585 phoenix = BuildSource.makePhoenix(PrintStreamMessenger.err);

586 }
587 else {
588 phoenix = BuildSource.makePhoenix(source, PrintStreamMessenger.err);

589 }
590

591 MoteIF mif = new MoteIF(phoenix);

592

593 RssiDemo serial = new RssiDemo(mif);

594

595

596 }
597

598

599 }

Listing C.2: JAVA code of Window.java

1 /*

2 * To change this template, choose Tools | Templates

3 * and open the template in the editor.

4 */

5

6 package mymaps;

7

8 /**

9 *

10 * @author spcomnav

11 */

APPENDIX C. ARID NAVIGATOR JAVA CODE 177

12

13 import java.awt.event.ActionEvent;

14 import java.net.URL;

15 import java.net.MalformedURLException;

16 import java.util.ArrayList;

17 import java.util.logging.Level;

18 import java.util.logging.Logger;

19

20 import org.jposition.CharacterInvalidException;

21 import org.jposition.Colors;

22 import org.jposition.Coordinate;

23 import org.jposition.CoordinateRangeException;

24 import org.jposition.Dimension;

25 import org.jposition.DimensionRangeException;

26 import org.jposition.MapTypeException;

27 import org.jposition.Marker;

28 import org.jposition.MarkersMap;

29 import org.jposition.ZoomRangeException;

30 import javax.swing.*;

31 import java.awt.*;

32 import java.util.List;

33 import edu.uab.geoloc.DeviceInfo;

34 import edu.uab.geoloc.ServerWrapper;

35 import sun.audio.*;

36 import java.io.*;

37

38

39 public class Window extends javax.swing.JFrame{
40

41 //Variabe declaration

42 public String[] MapURL;

43 //public String mapurl;

44 public MarkersMap mapa;

45 public ImageIcon image, marker, freeParking,nonfreeParking;

46 public JLabel markerLabel, markerAnchor1,markerAnchor2, markerAnchor3,

47 markerAnchor4, markerAnchor5, markerAnchor6;

48 public int PosCalculated, refresh, zoom, ParkingIconSizeWidth,

49 ParkingIconSizeHeight, ini=0;

50 public ArrayList<JLabel> markers;

51 public List<ParkingSensors> parkings;

52 public List<JLabel> markerAnchors;

53 public List<DeviceInfo> li;

54 public double centralLatToUTM,centralLonToUTM, centralLonToUTMproof,

55 centralLatToUTMproof, x mob, y mob,mpp=0,centralLat=0,

56 centralLon=0, cpx,cpy, contador=0.0;

57 public boolean coldstart, warmstart, audio;

58 public InputStream in=null;

178 Appendix C

59 public AudioStream as=null;

60 public long[] indexes;

61

62

63 private javax.swing.JTextField NewCord;

64 private javax.swing.JTextField centralcord;

65 public javax.swing.JButton jButton1;

66 public javax.swing.JButton jButton3;

67 private javax.swing.JButton jButton4;

68 private javax.swing.JLabel jLabel1;

69 private javax.swing.JLabel jLabel2;

70 private javax.swing.JLabel jLabel3;

71 private javax.swing.JLabel jLabel4;

72 private javax.swing.JLabel jLabel5;

73 private javax.swing.JLabel jLabel6;

74 private javax.swing.JLabel jLabel7;

75 private javax.swing.JLayeredPane jLayeredPane1;

76 private javax.swing.JLabel labelImage;

77 private javax.swing.JCheckBox jCheckBox1;

78

79

80 /** Creates new form Window */

81 public Window() {
82 //initComponents();

83 jLabel1 = new javax.swing.JLabel();

84 centralcord = new javax.swing.JTextField();

85 jButton1 = new javax.swing.JButton();

86 jLabel3 = new javax.swing.JLabel();

87 NewCord = new javax.swing.JTextField();

88 jLayeredPane1 = new javax.swing.JLayeredPane();

89 labelImage = new javax.swing.JLabel();

90 jButton3 = new javax.swing.JButton();

91 jLabel2 = new javax.swing.JLabel();

92 jLabel4 = new javax.swing.JLabel();

93 jButton4 = new javax.swing.JButton();

94 jLabel5 = new javax.swing.JLabel();

95 jLabel6 = new javax.swing.JLabel();

96 jLabel7 = new javax.swing.JLabel();

97 jCheckBox1 = new javax.swing.JCheckBox();

98

99 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT ON CLOSE);

100 setTitle("Xaloc Project. Car Positioning ");

101

102 jLabel1.setText("Central cordinate");

103

104 centralcord.setEnabled(false);

105

APPENDIX C. ARID NAVIGATOR JAVA CODE 179

106 jButton1.setText("Cold start");

107 jButton1.addActionListener(new java.awt.event.ActionListener() {
108 public void actionPerformed(java.awt.event.ActionEvent evt) {
109 jButton1ActionPerformed(evt);

110 }
111 });
112

113 jLabel3.setText("Measured cordinate");

114

115 NewCord.setEnabled(false);

116

117 labelImage.setPreferredSize(new java.awt.Dimension(620, 500));

118 labelImage.setBounds(0, 10, 620, 500);

119 jLayeredPane1.add(labelImage, javax.swing.JLayeredPane.DEFAULT LAYER);

120

121 jButton3.setText("Warm start");

122 jButton3.addActionListener(new java.awt.event.ActionListener() {
123 public void actionPerformed(java.awt.event.ActionEvent evt) {
124 jButton3ActionPerformed(evt);

125 }
126 });
127

128 jLabel2.setFont(new java.awt.Font("Tahoma", 1, 26));

129 jLabel2.setText("ARID NAVIGATOR");

130

131 jLabel4.setFont(new java.awt.Font("Tahoma", 1, 12));

132 jLabel4.setText("Â© 2010 SPCOMNAV - XALOC PROJECT");

133

134 jButton4.setText("Refresh");

135 jButton4.setEnabled(false);

136 jButton4.addActionListener(new java.awt.event.ActionListener() {
137 public void actionPerformed(java.awt.event.ActionEvent evt) {
138 jButton4ActionPerformed(evt);

139 }
140 });
141 jLabel5.setText("");

142 jLabel7.setText("");

143 jLabel6.setText("");

144 jCheckBox1.setText("Audio Off/On");

145 jCheckBox1.addActionListener(new java.awt.event.ActionListener() {
146 public void actionPerformed(java.awt.event.ActionEvent evt) {
147 jCheckBox1ActionPerformed(evt);

148 }
149 });
150 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

151 getContentPane().setLayout(layout);

152 layout.setHorizontalGroup(

180 Appendix C

153 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

154 .addGroup(layout.createSequentialGroup()

155 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

156 .addGroup(layout.createSequentialGroup()

157 .addContainerGap()

158 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

159 .addGroup(layout.createSequentialGroup()

160 .addComponent(jLayeredPane1, javax.swing.GroupLayout.PREFERRED SIZE, 620,

161 javax.swing.GroupLayout.PREFERRED SIZE)

162 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

163 .addGroup(layout.createSequentialGroup()

164 .addGap(70, 70, 70)

165 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

166 .addComponent(jLabel7)

167 .addComponent(jCheckBox1, javax.swing.GroupLayout.PREFERRED SIZE, 100,

168 javax.swing.GroupLayout.PREFERRED SIZE)

169 .addComponent(jButton4)

170 .addComponent(jButton3)

171 .addComponent(jButton1)))

172 .addGroup(layout.createSequentialGroup()

173 .addGap(18, 18, 18)

174 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

175 .addComponent(jLabel6, javax.swing.GroupLayout.PREFERRED SIZE, 343,

176 javax.swing.GroupLayout.PREFERRED SIZE)

177 .addComponent(jLabel5, javax.swing.GroupLayout.DEFAULT SIZE, 343,

178 Short.MAX VALUE)))))

179 .addGroup(layout.createSequentialGroup()

180 .addGap(48, 48, 48)

181 .addComponent(jLabel3)

182 .addGap(18, 18, 18)

183 .addComponent(NewCord, javax.swing.GroupLayout.PREFERRED SIZE, 160,

184 javax.swing.GroupLayout.PREFERRED SIZE)

185 .addGap(18, 18, 18)

186 .addComponent(jLabel1)

187 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

188 .addComponent(centralcord, javax.swing.GroupLayout.PREFERRED SIZE, 163,

189 javax.swing.GroupLayout.PREFERRED SIZE)))

190 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED,

191 javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE))

192 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

193 layout.createSequentialGroup()

194 .addContainerGap(415, Short.MAX VALUE)

195 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

196 .addComponent(jLabel2, javax.swing.GroupLayout.PREFERRED SIZE, 265,

197 javax.swing.GroupLayout.PREFERRED SIZE)

198 .addGroup(layout.createSequentialGroup()

199 .addGap(10, 10, 10)

APPENDIX C. ARID NAVIGATOR JAVA CODE 181

200 .addComponent(jLabel4)))

201 .addGap(311, 311, 311)))

202 .addGap(50, 50, 50))

203);

204 layout.setVerticalGroup(

205 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

206 .addGroup(layout.createSequentialGroup()

207 .addContainerGap()

208 .addComponent(jLabel2)

209 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

210 .addComponent(jLabel4)

211 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

212 .addGroup(layout.createSequentialGroup()

213 .addGap(23, 23, 23)

214 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

215 .addComponent(jLabel3)

216 .addComponent(NewCord, javax.swing.GroupLayout.PREFERRED SIZE,

217 javax.swing.GroupLayout.DEFAULT SIZE, javax.swing.GroupLayout.PREFERRED SIZE)

218 .addComponent(jLabel1)

219 .addComponent(centralcord, javax.swing.GroupLayout.PREFERRED SIZE,

220 javax.swing.GroupLayout.DEFAULT SIZE, javax.swing.GroupLayout.PREFERRED SIZE)))

221 .addGroup(layout.createSequentialGroup()

222 .addGap(18, 18, 18)

223 .addComponent(jLabel6, javax.swing.GroupLayout.PREFERRED SIZE, 20,

224 javax.swing.GroupLayout.PREFERRED SIZE)))

225 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

226 .addGroup(layout.createSequentialGroup()

227 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

228 .addComponent(jLayeredPane1, javax.swing.GroupLayout.PREFERRED SIZE, 500,

229 javax.swing.GroupLayout.PREFERRED SIZE))

230 .addGroup(layout.createSequentialGroup()

231 .addGap(18, 18, 18)

232 .addComponent(jLabel5, javax.swing.GroupLayout.PREFERRED SIZE, 28,

233 javax.swing.GroupLayout.PREFERRED SIZE)

234 .addGap(158, 158, 158)

235 .addComponent(jLabel7, javax.swing.GroupLayout.PREFERRED SIZE, 22,

236 javax.swing.GroupLayout.PREFERRED SIZE)

237 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

238 .addComponent(jButton1)

239 .addGap(18, 18, 18)

240 .addComponent(jButton3)

241 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

242 .addComponent(jButton4)

243 .addGap(18, 18, 18)

244 .addComponent(jCheckBox1)))

245 .addContainerGap(28, Short.MAX VALUE))

246);

182 Appendix C

247

248 jLabel1.getAccessibleContext().setAccessibleName("Direccion");

249

250 pack();

251 MyIniComponents();

252

253

254 }
255 public void MyIniComponents(){
256 zoom=19;

257 PosCalculated=0;

258 refresh=0;

259 cpx=this.labelImage.getWidth()/2; // central pixel in x

260 cpy=this.labelImage.getHeight()/2; //central pixel in y

261

262 //free Parking icon

263 freeParking = new ImageIcon(getClass().getResource("/mymaps/pBlau.gif"));

264 freeParking = new ImageIcon(freeParking.getImage().getScaledInstance(20,

265 20, Image.SCALE SMOOTH));

266

267 //non free Parking icon

268 nonfreeParking = new ImageIcon(getClass().getResource("/mymaps/pVermell.gif"));

269 nonfreeParking = new ImageIcon(nonfreeParking.getImage().

270 getScaledInstance(20, 20, Image.SCALE SMOOTH));

271

272 ParkingIconSizeWidth= freeParking.getIconWidth();

273 ParkingIconSizeHeight= freeParking.getIconHeight();

274

275 //Adding parking Sensors

276 parkings= new ArrayList<ParkingSensors>();

277 parkings.add(new ParkingSensors(426064.21, 4594717.32)); //anchor 1

278 parkings.add(new ParkingSensors(426070.39, 4594724.20)); //anchor 2

279 parkings.add(new ParkingSensors(426060.76, 4594720.39)); //anchor 3

280 parkings.add(new ParkingSensors(426066.66, 4594727.57)); //anchor 4

281 parkings.add(new ParkingSensors(426057.03, 4594723.72)); //anchor 5

282 parkings.add(new ParkingSensors(426062.95, 4594730.92)); //anchor 6

283 parkings.add(new ParkingSensors(426053.30, 4594727.05)); //anchor 7

284 parkings.add(new ParkingSensors(426059.24, 4594734.28)); //anchor 8

285 parkings.add(new ParkingSensors(426049.56, 4594730.38)); //anchor 9

286 parkings.add(new ParkingSensors(426055.53, 4594737.63)); //anchor 10

287 parkings.add(new ParkingSensors(426045.83, 4594733.70)); //anchor 11

288 parkings.add(new ParkingSensors(426051.82, 4594740.98)); //anchor 12

289 //added

290 parkings.add(new ParkingSensors(426042.10,4594737.03)); //anchor 13

291 parkings.add(new ParkingSensors(426048.11,4594744.33)); //anchor 14

292 parkings.add(new ParkingSensors(426038.37,4594740.36)); //anchor 15

293 parkings.add(new ParkingSensors(426044.40,4594747.69)); //anchor 16

APPENDIX C. ARID NAVIGATOR JAVA CODE 183

294 parkings.add(new ParkingSensors(426034.63,4594743.68)); //anchor 17

295 parkings.add(new ParkingSensors(426040.69,4594751.04)); //anchor 18

296 parkings.add(new ParkingSensors(426030.90,4594747.01)); //anchor 19

297 parkings.add(new ParkingSensors(426036.98,4594754.39)); //anchor 20

298

299 li = new ArrayList <DeviceInfo>();

300 markerAnchors=new ArrayList<JLabel>();

301 audio=false;

302 }
303

304 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
305 //cold start button

306 coldstart=true;

307 warmstart=false;

308 this.jButton1.setEnabled(false);

309 this.jButton3.setEnabled(false);

310 this.jButton4.setEnabled(true);

311 if (this.refresh==1){
312 this.refresh=0;

313 }
314 checkParkingState(); //another timer with audio

315 }
316

317 private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {
318 // TODO add your handling code here:

319 //Warm Start button

320 coldstart=false;

321 warmstart=true;

322 this.jButton1.setEnabled(false);

323 this.jButton3.setEnabled(false);

324 checkParkingState(); //with audio

325 }
326 private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {
327 // TODO add your handling code here:

328 //Refresh button

329 PosCalculated=0;

330 refresh=1;

331 jLayeredPane1.removeAll();

332 jLayeredPane1.validate();

333 repaint();

334 this.labelImage.setIcon(image);

335 jLayeredPane1.add(this.labelImage);

336 }
337 private void jCheckBox1ActionPerformed(java.awt.event.ActionEvent evt) {
338 // TODO add your handling code here:

339 if (!jCheckBox1.isSelected()){
340 audio=false;

184 Appendix C

341 }
342 else if (jCheckBox1.isSelected()){
343 audio=true;

344 }
345 }
346 @SuppressWarnings("static-access")

347

348 public void startNavigator(double UTMEasting, double UTMNorthing,

349 double[] potencia, double vkalman){
350 //System.out.println("iniciando");

351 double diffxx0, diffyy0,measuredLat, measuredLon;

352 int pmpx,pmpy;

353

354 double[] centralGeoCordinates, measuredGeoCordinates;

355

356 PosCalculated=PosCalculated+1;

357 y mob=(double)UTMNorthing;

358 x mob=(double)UTMEasting;

359

360 //pmpx: pixels of the measured easting in x

361 //pmpy: pixels of the measured northing in y

362 //diffxx0: x-x0, diffyy0: y-y0; (x0,y0): are the central cordinates

363 //of the map in UTM and (x,y) are the

364 //measured coordinates

365

366 String newUTM, mapurl;

367 Coordinateconversion cordinates = new Coordinateconversion();

368 Coordinate coordenada1 = null;

369

370 if (this.refresh==1 & coldstart){
371 centralLatToUTM=y mob;

372 centralLonToUTM=x mob;

373 }
374 if (PosCalculated==1)

375 {
376 if (coldstart) {
377 centralLatToUTM=y mob;

378 centralLonToUTM=x mob;

379 }
380 else if (warmstart){
381 //centralLatToUTM=4594716.87;

382 centralLatToUTM=4594716.25;

383 //centralLonToUTM=426068.23;

384 centralLonToUTM=426068.65;

385 }
386 newUTM="31 T "+String.valueOf(centralLonToUTM)+" "+

387 String.valueOf(centralLatToUTM);

APPENDIX C. ARID NAVIGATOR JAVA CODE 185

388 centralGeoCordinates=cordinates.utm2LatLon(newUTM);

389 centralLat=centralGeoCordinates[0];

390 centralLon=centralGeoCordinates[1];

391 this.centralcord.setText(String.valueOf(centralLat).

392 substring(0, 8)+" "+String.valueOf(centralLon).substring(0,8));

393 this.centralcord.setEnabled(true);

394 //mpp: meters per pixel

395 mpp= this.getmpp();

396

397 }
398 else if (PosCalculated>1){
399 jLayeredPane1.remove(markerLabel);

400 jLayeredPane1.validate();

401 repaint();

402 }
403

404 newUTM="31 T "+String.valueOf(x mob)+" "+String.valueOf(y mob);

405 measuredGeoCordinates=cordinates.utm2LatLon(newUTM);

406 measuredLat= measuredGeoCordinates[0];

407 measuredLon= measuredGeoCordinates[1];

408

409 NewCord.setText(String.valueOf(measuredLat).substring(0,8)+","+

410 String.valueOf(measuredLon).substring(0, 8));

411 NewCord.setEnabled(true);

412 diffxx0=x mob-centralLonToUTM;

413 diffyy0=y mob-centralLatToUTM;

414

415 pmpx=Math.round((float)(cpx+diffxx0/mpp));

416 pmpy=Math.round((float)(cpy-diffyy0/mpp));

417

418 marker = new ImageIcon(getClass().getResource("/mymaps/puntV.gif"));

419 //changing the size of the image

420 marker = new ImageIcon(marker.getImage().getScaledInstance(20, 20,

421 Image.SCALE SMOOTH));

422 markerLabel = new JLabel(marker);

423

424 // Calculamos el punto X medio del mapa para el icono.

425 pmpx = Math.round(pmpx- markerLabel.getIcon().getIconWidth()/3);

426 // Calculamos el punto Y medio del mapa para el icono.

427 pmpy = Math.round(pmpy+markerLabel.getIcon().getIconHeight()/3);

428

429 markerLabel.setBounds(pmpx,pmpy,

430 markerLabel.getIcon().getIconWidth(),

431 markerLabel.getIcon().getIconHeight());

432 // Insertamos el componente en la capa 1 (por encima de la capa 0)

433 try {
434 coordenada1 = new Coordinate(centralLat,centralLon);

186 Appendix C

435

436 } catch (CoordinateRangeException ex) {
437 Logger.getLogger(Window.class.getName()).log(Level.SEVERE,

438 null, ex);

439 }
440

441 if (coldstart) {
442 // System.out.println("coldstart");

443 try {
444 ArrayList<Marker> listaPuntos = new ArrayList<Marker>();

445

446 mapa = new MarkersMap("", coordenada1, 17, listaPuntos);

447 mapa.setDimmension(new Dimension(610, 500));

448 mapa.setMapType(MarkersMap.Satellite);

449

450 mapurl=mapa.getMapURL();

451 mapurl=mapurl.replaceAll("zoom=17", "zoom="+String.valueOf(zoom));

452

453 try {
454

455 if (PosCalculated==1)

456 {
457 System.out.println("Ahora empezamos a descargar la imagen " +

458 "servidor");

459 long tiempoInicio = System.currentTimeMillis();

460 image = new ImageIcon(new URL(mapurl));

461 this.labelImage.setIcon(image);

462 long TotalTiempo = System.currentTimeMillis()-tiempoInicio;

463 System.out.println("El tiempo de demora en obtener la imagen " +

464 "del servidor es:" + TotalTiempo/1000 + " seg");

465 }
466 } catch (MalformedURLException ex) {
467 Logger.getLogger(Window.class.getName()).log(Level.SEVERE, null, ex);

468 }
469 }catch (MapTypeException ex) {
470 Logger.getLogger(Window.class.getName()).log(Level.SEVERE, null, ex);

471

472 }catch (DimensionRangeException ex) {
473 Logger.getLogger(Window.class.getName()).log(Level.SEVERE, null, ex);

474 } catch (ZoomRangeException ex) {
475 Logger.getLogger(Window.class.getName()).log(Level.SEVERE, null, ex);

476

477 }
478

479 }
480 else if (warmstart){
481 if (PosCalculated==1)

APPENDIX C. ARID NAVIGATOR JAVA CODE 187

482 {
483 image = new ImageIcon(getClass().getResource("/mymaps/mapa1.jpg"));

484 this.labelImage.setIcon(image);

485

486 }
487

488 }
489 jLayeredPane1.setLayer(markerLabel, new Integer(2));

490 jLayeredPane1.add(markerLabel ,new Integer(2));

491 }
492

493 public double getmpp(){
494 mpp= Math.cos(centralLat*Math.PI/180)*(1/Math.pow(2,(zoom+8)))*40075017;

495 return mpp;

496 }
497 public void checkParkingState(){
498 if (jCheckBox1.isSelected()){
499 audio=true;

500 }
501 int delay=10000; //every 2 sg we wheck the state of each parking

502 java.awt.event.ActionListener taskPerformer = new

503 java.awt.event.ActionListener() {
504 public void actionPerformed(java.awt.event.ActionEvent evt) {
505 int num free parkings=0;

506 try{
507 li=ServerWrapper.getData();

508 }catch (Exception e){}
509 try{
510

511 for (int pos=1; pos≤18; pos++){
512 if (li.get(pos).isOcupat()){
513 drawParkingIcon(pos-1, li.get(pos).isOcupat());

514 }
515 if (!li.get(pos).isOcupat()){
516 num free parkings++;

517 drawParkingIcon(pos-1, li.get(pos).isOcupat());

518 }
519 }
520 if (contador %10 == 0 && audio){
521 sound(num free parkings);

522 }
523 }catch(Exception e){
524 e.printStackTrace();

525

526 }
527 contador=contador+10.0;

528 if (ini==0){ini=ini+1;}

188 Appendix C

529 }
530 };
531 new Timer(delay, taskPerformer).start();

532 }
533

534 public void drawParkingIcon(int id, boolean state){
535 double metersppx, diffanchxx0, diffanchyy0;

536 int pmpanchx, pmpanchy;

537 double bb,cc;

538 metersppx= this.getmpp();

539

540 bb=parkings.get(id).getUTM lat();

541 cc=parkings.get(id).getUTM lon();

542 diffanchyy0 = parkings.get(id).getUTM lat()-centralLatToUTM;

543 diffanchxx0 = parkings.get(id).getUTM lon()-centralLonToUTM;

544

545 pmpanchx= Math.round((float)(cpx+diffanchxx0/metersppx));

546 pmpanchy= Math.round((float)(cpy-diffanchyy0/metersppx));

547 pmpanchx=Math.round(pmpanchx - ParkingIconSizeWidth/3);

548 pmpanchy=Math.round(pmpanchy+ ParkingIconSizeHeight/3);

549

550 if (ini!=0){
551 jLayeredPane1.remove(markerAnchors.get(17));

552 jLayeredPane1.validate();

553 jLayeredPane1.repaint();

554 }
555 if (state){
556 markerAnchor1 = new JLabel(nonfreeParking);

557 }else{
558 markerAnchor1 = new JLabel(freeParking);

559 }
560 markerAnchors.add(id,markerAnchor1);

561 markerAnchors.get(id).setBounds(pmpanchx, pmpanchy,

562 freeParking.getIconWidth(),freeParking.getIconHeight());

563 jLayeredPane1.setLayer(markerAnchors.get(id), new Integer(1));

564 jLayeredPane1.add(markerAnchors.get(id) ,new Integer(1));

565

566

567 }
568 public void sound(int numFreeParkings){
569 try{
570

571 String file = "/audio/"+String.valueOf(numFreeParkings)+".wav";

572 in = getClass().getResourceAsStream(file);

573 as = new AudioStream(in);

574 AudioPlayer.player.start(as);

575 }catch(Exception e){

APPENDIX C. ARID NAVIGATOR JAVA CODE 189

576 e.printStackTrace();

577 }
578

579 }
580 }

Listing C.3: JAVA code of ParkingSensors.java

1 /*

2 * To change this template, choose Tools | Templates

3 * and open the template in the editor.

4 */

5

6 package mymaps;

7

8 /**

9 *

10 * @author Administrador

11 */

12 public class ParkingSensors {
13 private double UTM lat, UTM lon;

14

15 public ParkingSensors(double UTM lon,double UTM lat) {
16 //Coordinateconversion con = new Coordinateconversion();

17 //String[] utm;

18 //utm=con.latLon2UTM(GPS lon, GPS lon).split("\\s+");
19 this.UTM lat= UTM lat;

20 this.UTM lon = UTM lon;

21 }
22

23

24 public double getUTM lat() {
25 return UTM lat;

26 }
27

28 public double getUTM lon() {
29 return UTM lon;

30 }
31

32 public void setUTM lat(double UTM lat) {
33 this.UTM lat = UTM lat;

34 }
35

36 public void setUTM lon(double UTM lon) {
37 this.UTM lon = UTM lon;

38 }

190 Appendix C

39

40

41 }

Listing C.4: JAVA code of KalmanFilter.java

1 /*

2 * To change this template, choose Tools | Templates

3 * and open the template in the editor.

4 */

5

6 package mymaps;

7

8 /**

9 *

10 * @author spcomnav

11 */

12 public class Kalman filter {
13 double[] KFestimates = new double[2];

14 double samplingT;

15 double [][]P=new double[2][2];

16 double[] k = new double[2];

17

18 public Kalman filter(){};
19 public Kalman filter(double x0mob,double v, double T,double R){
20

21 KFestimates[0]=x0mob;

22 KFestimates[1]=v;

23 P[0][0]=R;

24 P[0][1]=R/T;

25 P[1][0]= R/T;

26 P[1][1]=2*R/Math.pow(T, 2);

27 samplingT=T;

28 }
29

30 public double[] kalman(double statevector[],double V,double R,double z) {
31 double posx,vx,T, S,error;

32 T=this.samplingT;

33 double[] tau, predsv, correction,updsv; //prediction state vector,

34 //and updated state vector

35 double[][] Q, P pred,P upd,P;

36 Q= new double [2][2];

37 P pred=new double [2][2];

38 P upd=new double [2][2];

39 tau=new double[2];

40 predsv=new double[2];

APPENDIX C. ARID NAVIGATOR JAVA CODE 191

41 updsv=new double[2];

42 correction=new double[2];

43 P=this.P;

44

45 posx=statevector[0];

46 vx=statevector[1];

47 //BELOW GENERATING KALMAN COEFFICIENTS------------------------------

48 tau[0] = (1/2)*Math.pow(T, 2);

49 tau[1]=T;

50

51 Q[0][0]=((Math.pow(T, 4))/4)*V;

52 Q[0][1]=((Math.pow(T, 3))/2)*V;

53 Q[1][0]=Q[0][1];

54 Q[1][1]=(Math.pow(T, 2))*V;

55

56 P pred[0][0]=P[0][0]+P[1][0]*T+P[0][1]*T+P[1][1]

57 *Math.pow(T, 2)+Q[0][0];

58 P pred[0][1]=P[0][1]+P[1][1]*T+Q[0][1];

59 P pred[1][0]=P[1][0]+P[1][1]*T+Q[1][0];

60 P pred[1][1]=P[1][1]+Q[1][1];

61

62 S=P pred[0][0]+R;

63

64 k[0]=P pred[0][0]/S;

65 k[1]=P pred[1][0]/S;

66

67 P upd[0][0]=P pred[0][0]-Math.pow(k[0], 2)*S;

68 P upd[0][1]=P pred[0][1]-k[0]*S*k[1];

69 P upd[1][0]=P pred[1][0]-k[0]*S*k[1];

70 P upd[1][1]=P pred[1][1]-Math.pow(k[1], 2)*S;

71

72 this.P=P upd;

73 //---

74 //BELOW RUNNING KALMAN EQUATIONS!!!

75 predsv[0]=posx+T*vx;

76 predsv[1]=vx;

77

78 error=z-predsv[0];

79 correction[0]=k[0]*error;

80 correction[1]=k[1]*error;

81

82 updsv[0]=correction[0]+predsv[0];

83 updsv[1]=correction[1]+predsv[1];

84

85

86 return updsv;

87 }

192 Appendix C

88 public double[] getcoefficients(){
89 return k;

90 }
91 }

Appendix D

XALOC news

The XALOC project has demonstrated a novel system to automatically guide the drivers to find

free parking slots in an urban area. This is done installing one sensor mote in each parking slots.

The sensors send to a central server information whether a parking slots is busy or not. On the

other hand, all the sensors contribute to perform positioning of the driver using some positioning

methods. Thus a navigator implementation is developed to show the real-time position of the

driver when he is moving at a low speed looking for an available parking. This navigator shows

also the number of free-non free parking slots and has the option to notify the number of available

parkings by audio.

The XALOC project was demonstrated in a pilot test in the last INFOREGIO projects

announcement (with a reference number 2009INFOREGIO-0016). XALOC project got a large

impact to both fields research-technical and the media. The details of the project appeared the

following day in TV media (TV,TV3, BTV, ETB,...), radio (RAC1, RNE, COM Ràdio, ...) and

press (El periódico de Catalunya, Diari AVUI, La vanguardia, El Punt, ...).

This appendix shows some photos taken during the live demonstration as well as some di-

vulged news from the press obtained on July 07 2010 at the GPS coordinates 41.500848, 2.113959

which is located at the UAB fire department parking.

D.1 Photos of the demonstration day

This section shows some taken photos at the demonstration day with different production com-

panies: TV3, TVE-1, Antena3, Telecinco, BTV noticies, Atlas and eitb.

193

194 Appendix D

(a) (b)

Figure D.1: Photos showing different production companies

.

(a) (b)

Figure D.2: D.2(a) shows the used car for the demonstration. D.2(b) shows all the used equip-

ment for the demonstration

Figure D.3: They are the BTVNoticies producers.

APPENDIX D. XALOC NEWS 195

D.2 Live demonstration news

This section shows some recollected news of the live demonstration.

08/07/10DIARI DE TERRASSA
TERRASSA

Prensa: Diaria
Tirada: 5.998 Ejemplares
Difusión: 4.991 Ejemplares

Página: 10
Sección: LOCAL Valor: 376,00 € Área (cm2): 499,2 Ocupación: 45,55 % Documento: 1/1 Cód: 39572659

08/07/10QUE! (BARCELONA)
BARCELONA

Prensa: Diaria
Tirada: 200.215 Ejemplares
Difusión: 200.215 Ejemplares

Página: 8
Sección: LOCAL Valor: 5.053,00 € Área (cm2): 608,7 Ocupación: 60,22 % Documento: 1/1 Cód: 39573340

08/07/10PUBLICO (PUBLIC)
MADRID

Prensa: Diaria
Tirada: 117.459 Ejemplares
Difusión: 74.084 Ejemplares

Página: 6
Sección: SOCIEDAD Valor: 2.306,00 € Área (cm2): 494,5 Ocupación: 47,74 % Documento: 1/1 Cód: 39568717

 Search

Popular Searches:
lims, visualization, chemistry, statistics, hpc

INFORMATICS HPC DATA ANALYSIS DATA SOLUTIONS LIMS GUIDE MULTIMEDIA NEWSLETTERS NEWS

JOB SEARCH WHITE PAPERS SUBSCRIBE DIGITAL LIBRARY ADVERTISE EDITORIAL CONTACT US ABOUT US

TOPICS

Informatics

HPC

Data Analysis

Data Solutions

SITE SPONSORS

Home > New System Helps Locate Car Park Spaces

New System Helps Locate Car Park Spaces

By AlphaGalileo

A research group from the Universitat Autònoma de Barcelona Department of Telecommunications and Systems
Engineering at the School of Engineering, led by José López Vicario and Antoni Morell, took part in the
development of a new system which locates unoccupied car park spaces and guides users to the nearest one.
The new network of sensors for the management of public car parks and locations, which researchers have
named XALOC (Xarxes de sensors per a la gestió d’Aparcaments públics i LOCalització), was developed by a
consortium formed by the firm WorldSensing (consortium leader) and the Centre for Telecommunications
Technology of Catalonia (CTTC). The project was financed by Catalan Government's Agency for Administration of
University and Research Grants (AGAUR).

The project's consortium developed a platform based on a network of wireless sensors capable of detecting
unoccupied spaces outdoors, and on an alternative positioning system with more precision in urban areas than
GPS technology. This platform is capable of locating and guiding drivers to car park spaces available in the area.

The network's sensors are located on the ground directly in the middle of the car park space. The sensors detect
whether the space is occupied or not and send information via internet to a central station. The server processes
this information and sends it to indication panels located in the street which display the information in real time.
Advanced communication techniques are used to send guidance data to the network.

The sensor platform at the same time locates users looking to park and thus offers a personalised service. UAB
researchers have designed a specific portable navigator for users called ARID Navigator which makes use of
communication signals belonging to the network of sensors to position users within their urban surroundings.
Once the vehicle is located, the navigator communicates with XALOC's central server and reports to the user the
number of available car park spaces in the area and where they are located.

The positioning and location technology used to develop the system is totally new and offers many advantages in
comparison to conventional GPS navigators, such as more precise urban location techniques, reduced
positioning time and better coverage.

The XALOC system will improve traffic management in urban areas and reduce what is known as "agitated
traffic", traffic caused by drivers circulating and looking for a place to park. Reducing the volume of agitated traffic
will allow for a substantial improvement in circulation fluidity in urban areas and thus contribute to effective
reductions in pollution and an increase in citizen satisfaction.

SOURCE

 Email for more Information.

Email Article | Contact the Editor | Printer Friendly

 Post to Del.icio.us | Digg This | Post to Slashdot

Russian Mathematician
Rejects $1 Million
Millennium Prize
Famed Hominid Lucy no
Longer Alone
New Hawking Book Due
Out this Fall
Bionic Cat gets Prosthetic
Paws
Programmable Matter
Creates Self-folding
Sheets
Pulsars Help Uncover
Ripples in Space-Time
Galactic Archaeologists
Find Origin of Milky Way’s
Stars
Improved Telescope
Peers Clearly Through
Atmosphere
Seeking a Bridge to the
Quantum World
Mass Spectrometry Used
in Oil Spill Research
Mission

Sponsored Links

Managed Hosting at the
Planet
Chat with an Expert
About Our Top-Selling
Managed Server
Configurations Here!

Free Access to SAP BI
Resource Center
Empower your users to
discover how to explore
business at the speed
of thought.

The Planet Windows
Hosting
Chat with One of Our
Experts About
Dedicated Hosting from
The Planet!

Create Netbook Apps and
Win!
Big prizes for
groundbreaking apps in

08/07/2010 New System Helps Locate Car Park S…

scimag.com/news-new-system-helps-… 1/2

08/07/10SUR
MALAGA

Prensa: Diaria
Tirada: 36.690 Ejemplares
Difusión: 30.438 Ejemplares

Página: 50
Sección: SOCIEDAD Valor: 2.166,00 € Área (cm2): 513,8 Ocupación: 50,13 % Documento: 1/1 Cód: 39582540

08/07/10DIARI DE SABADELL
SABADELL

Prensa: Diaria
Tirada: 5.659 Ejemplares
Difusión: 4.438 Ejemplares

Página: 5
Sección: LOCAL Valor: 384,00 € Área (cm2): 436,3 Ocupación: 45,75 % Documento: 1/1 Cód: 39573423

|

Jueves 08/07/2010. Actualizado 16:18h.

© 2010 Unidad Editorial Internet, S.L.

PROYECTO | XALOC

Su aparcamiento libre, tras el segundo cruce a la derecha

En Barcelona, los coches en busca de plaza emiten hasta 15 toneladas de CO2

El XALOC instala un sensor en cada aparcamiento, que avisa si está libre
La información se transmite a una pantalla o a un navegador en el vehículo

Eva Belmonte | Barcelona

Actualizado jueves 08/07/2010 16:18 horas

En una ciudad como Barcelona, los coches en busca de aparcamiento provocan diez toneladas al día de

CO2. Si al perjuicio ecológico le sumamos el impacto en la salud mental de los conductores, que dedican
entre 10 y 15 minutos al día a esta engorrosa tarea, las rondas en busca de plaza se convierten en un mal
endémico de las grandes ciudades. Un proyecto de la Universitat Autònoma de Barcelona (UAB) le
hace frente presentando el primer sistema para localizar aparcamientos en plena calle.

Desarrrollado por la UAB, la empresa WorldSensing y el Centre Tecnològic de Telecomunicacions de
Catalunya (CTTC), el XALOC está compuesto por una red de sensores que se colocan en las plazas de
parking. Cada uno de ellos envía una señal -libre/ocupado- a un servidor que coloca los inputs en un
mapa de la ciudad. Esta valiosa información se visualizaría en pantallas luminosas que indiquen el camino a
seguir a los conductores.

Como complemento, los investigadores de la UAB han diseñado un navegador portátil para el coche -
ARID-, que indica al conductor, tras lanzar al servidor su posición, la plaza libre más cercana. "La idea es
que ARID se pueda usar en cualquier terminal conectada a internet, como un iPad o una
Blackberry, por ejemplo", adelanta José López Vicario, uno de los investigadores que ha liderado el
proyecto.

El sistema de sensores funciona como el de los parkings privados que iluminan en verde las plazas
libres. La diferencia sustancial de este proyecto, tal y como la explica López, es que los aparcamientos
subterráneos funcionan con ultrasonidos colocados encima de los coches, un sistema imposible de
implantar en plena calle. Además de instalar sensores en la superficie, justo en el centro de la plaza de
aparcamiento, el XALOC permite centralizar toda la información. Esta red de aparcamientos, además,
mejora la conectibilidad del GPS, ya que funciona, advierte López, "en subterráneos y zonas de la
ciudad donde el GPS no llega".

Aunque por el momento no se aplicará en ninguna ciudad española, los responsables del proyecto han
establecido contactos con ayuntamientos como el de Barcelona. La capital catalana podría
convertirse, así, en un enorme parking puntero al aire libre. Y en un descanso para el conductor de ronda.

20/07/2010 Su aparcamiento libre, tras el segund…

elmundo.es/…/1278522704.html 1/1

Mischa Dohler, investigador del CTTC;
Ignasi Vilajosana gerente de
WorldSensing; y José López Vicario,
investigador de la UAB

El sistema XALOC mejorará la
gestión del tránsito en entornos
urbanos, disminuyendo lo que
los expertos llaman "tránsito de
agitación", es decir, el tránsito
de vehículos que circulan sin
rumbo específico buscando un
lugar donde aparcar

NOTICIA AMPLIADA

INNOVACIÓN

Desarrollan un sistema para localizar
plazas de aparcamiento en la calle
Universitat Autònoma de Barcelona

Investigadores de la UAB, de la empresa WorldSensing y del Centro
Tecnológico de Telecomunicaciones de Catalunya (CTTC) han
desarrollado un sistema que localiza plazas de aparcamiento libres
en la calle y que guía al usuario hasta la más próxima. El sistema, al
que han llamado XALOC, está basado en una nueva tecnología de
localización más precisa que el GPS en zonas urbanas.

8/7/2010

Un equipo de investigadores del Departamento de
Telecomunicación e Ingeniería de Sistemas de la UAB , en la
Escuela de Ingeniería, dirigido por José López Vicario y Antoni
Morell, ha participado en el desarrollo de un nuevo sistema que
localiza plazas de aparcamiento libres en la calle y guía al usuario
hasta la más cercana. El sistema, llamado XALOC (Xarxes de
sensors per a la gestió d’Aparcaments públics i LOCalització), ha
sido desarrollado por un consorcio en el que también participan la
empresa WorldSensing (líder del consorcio), y el Centro
Tecnológico de Telecomunicaciones de Catalunya (CTTC),
financiado por la Agència de Gestió d’Ajuts Universitaris i de

Recerca (AGAUR) de la Generalitat de Catalunya.

El consorcio del proyecto ha desarrollado una plataforma basada en una red de sensores sin hilos capaz de
realizar tareas de detección de plazas libres de aparcamiento en exteriores, y tareas de localización de vehículos
con un sistema alternativo al GPS, y más preciso que éste en zonas urbanas. Con esta plataforma es posible
localizar y guiar a los conductores hacia las plazas de aparcamiento disponibles dentro del área de interés.

Los sensores de la red se sitúan en el pavimento de la calle, justo en el centro de las áreas azules y verdes.
Estos sensores detectan si la plaza está o no ocupada, y transmiten la información, mediante Internet, a un servidor
central. Este servidor las procesa y las envía a paneles indicativos situados en la calle que muestran la información
del estado de ocupación de la zona en tiempo real. Se han utilizado técnicas de comunicación avanzadas para
llevar a cabo el guiado de los datos de la red.

Al mismo tiempo, la plataforma de sensores localiza a los usuarios que buscan aparcamiento, de modo que se
puede ofrecer un servicio personalizado. En concreto, los investigadores de la UAB han diseñado un navegador
portátil para el usuario, llamado ARID Navigator, que aprovecha las señales de comunicaciones, propias de la red
de sensores, para posicionarse en el entorno urbano. Una vez se localiza el vehículo, el navegador se comunica
con el servidor central de XALOC para conocer el número de aparcamientos libres en la zona y su ubicación, y
muestra toda esta información al usuario.

La tecnología de posicionamiento y de localización es totalmente nueva y ofrece grandes ventajas respecto a los
navegadores convencionales, basados en GPS, como son una localización más precisa en entornos urbanos, un
tiempo de posicionamiento más reducido y mejor cobertura del servicio.

El sistema XALOC mejorará la gestión del tránsito en entornos urbanos, disminuyendo lo que los expertos llaman
“tránsito de agitación”, es decir, el tránsito de vehículos que circulan sin rumbo específico buscando un lugar
donde aparcar. Una disminución del volumen del tránsito de agitación permitirá mejorar la fluidez de la circulación
de manera substancial en entornos urbanos, para contribuir a una reducción efectiva de la contaminación y a un
aumento de la satisfacción del ciudadano.

08/07/2010 DESARROLLAN-SISTEMA-LOCALIZAR…

universia.es/…/noticia_actualidad.jsp… 1/2

204 Appendix D

Bibliography

[1] Y. I.F.Akyildiz, S.Weilian and E.Cayirci, “A survey on sensor networks,” Communications
Magazine, IEEE, vol. 40, no. 8, pp. 102 – 114, Aug 2002.

[2] G. S.Evripidis and T.Zahariadis, “AWSN Protocol Stack Specification and High Level
Node Architecture,” Telecommunications System Institute, Tech. Rep., Oct 2008. [Online].
Available: ”http://www.awissenet.eu/downloadfile.aspx?fid=11501ftype=d”

[3] [Online]. Available: ”http://www.xbow.com/Products/productdetails.aspx?sid=264”

[4] A.Savvides, “Introduction to location discovery, lecture 4.”

[5] S. A. I. R. N.Patwari, J.N.Ash and N.S.Correal, “Locating the nodes: cooperative localiza-
tion in wireless sensor networks,” Signal Processing Magazine, IEEE, vol. 22, no. 4, pp. 54
– 69, July 2005.

[6] J. N.Bulusu and D.Estrin, “Gps-less low-cost outdoor localization for very small devices,”
Personal Communications, IEEE, vol. 7, no. 5, pp. 28 –34, Oct 2000.

[7] D.Niculescu and B.Nath, “DV based positioning in ad hoc networks,” Telecommunication
Systems, vol. 22, no. 1, pp. 267–280, 2003.

[8] C. A.Savvides and M.B.Srivastava, “Dynamic fine-grained localization in ad-hoc wireless
sensor networks,” UC Los Angeles: Center for Embedded Network Sensing. Retrieved from:
http://www. escholarship. org/uc/item/6xs0j41x, 2001.

[9] “Wireless hybrid enhanced mobile radio estimators.”

[10] M. C.Rohrig, “Localization of sensor nodes in a wireless sensor network using the nanoloc
trx transceiver,” April 2009, pp. 1 –5.

[11] X.-h. Z.Ke, L.Yang and S.Heejong, “The application of a wireless sensor network design
based on zigbee in petrochemical industry field,” Nov. 2008, pp. 284 –287.

[12] K. Y.Bar-Shalom, L.X.-rong. 605 Third Avenue, New York, NY 10158-0012: Willey-
Interscience, 2001, vol. 1.

[13] G. Welch and G. Bishop, “An introduction to the Kalman filter,” University of North
Carolina at Chapel Hill, Chapel Hill, NC, 1995.

[14] Y.Tai and Y.Bo, “Collaborative target tracking in wireless sensor network,” Aug. 2009, pp.
2–1005 –2–1010.

i

ii Bibliography

[15] H.-L. M.E.Farmer and A.K.Jain, “Interacting multiple model (imm) kalman filters for ro-
bust high speed human motion tracking,” in Pattern Recognition, 2002. Proceedings. 16th
International Conference on, vol. 2, 2002, pp. 20 – 23 vol.2.

[16] Atmel, “ZigBittm 700/800/900 mhz wireless modules, atz-900-b0.” Telecom-
munications System Institute, Tech. Rep., Oct 2008. [Online]. Available:
”http://www.atmel.com/dyn/resources/prod documents/doc8227.pdf”

[17] A. W.R.Heinzelman and H.Balakrishnan, “Energy-efficient communication protocol
for wireless microsensor networks,” in HICSS ’00: Proceedings of the 33rd Hawaii
International Conference on System Sciences-Volume 8. Washington, DC, USA:
IEEE Computer Society, 2000, p. 8020.

[18] M.Shemshaki and H.S.Shahhoseini, “Energy efficient clustering algorithm with direct
path supports,” May 2009, pp. 277 –281.

[19] O.Buyanjargal and K.Youngmi, “An Energy Efficient Clustering Algorithm for
Event-Driven Wireless Sensor Networks (EECED),” Aug. 2009, pp. 1758 –1763.

[20] F.G.Mula, “Redes de sensores inalámbricos,” Computer and Architecture Depart-
ment,University of Granada, Tech. Rep., July 2007.

[21] K. Soe, “Increasing lifetime of target tracking wireless sensor networks,” World
Academy of Science Engineering and Technology, vol. 32, no. 32, pp. 440–446, 2008.

[22] S.Suganya, “Cluster-based approach for collaborative target tracking in wireless sen-
sor networks,” July 2008, pp. 276 –281.

[23] S. S.Balasubramanian, I.Elangovan and K.R.Namuduri, “Distributed and collabora-
tive tracking for energy-constrained ad-hoc wireless sensor networks,” vol. 3, March
2004, pp. 1732 – 1737 Vol.3.

[24] O.-H. S.Kuo-Feng and H.C.Jiau, “Localization with mobile anchor points in wireless
sensor networks,” Vehicular Technology, IEEE Transactions on, vol. 54, no. 3, pp.
1187 – 1197, May 2005.

[25] B.-J. T.He, C.Huang and T.Abdelzaher, “Range-free localization schemes for large
scale sensor networks,” in Proceedings of the 9th annual international conference on
Mobile computing and networking. ACM, 2003, p. 95.

[26] P.-P. X. S.Tian, X.Zhang, “A RSSI-based DV-hop algorithm for wireless sensor net-
works,” in International Conference on Wireless Communications, Networking and
Mobile Computing, 2007. WiCom 2007, 2007, pp. 2555–2558.

[27] J. M. C.Savarese and K.Langendoen, “Robust positioning algorithms for distributed
ad-hoc wireless sensor networks,” in ATEC ’02: Proceedings of the General Track
of the annual conference on USENIX Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2002, pp. 317–327.

[28] R.Nagpal, “Organizing a global coordinate system from local information on an amor-
phous computer,” 1999.

Bibliography iii

[29] Y. O.Baala and A.Caminada, “The impact of ap placement in wlan-based indoor
positioning system,” March 2009, pp. 12 –17.

[30] O.Baala and A.Caminada, “Wlan-based indoor positioning system: experimental
results for stationary and tracking ms,” Nov. 2006, pp. 1 –4.

[31] A.-J. H.Wang, H.Lenz and U.D.Hanebeck, “Wlan-based pedestrian tracking using
particle filters and low-cost mems sensors,” March 2007, pp. 1 –7.

[32] T. T.Kitasuka and A. Fukuda, “Design of wips: Wlan-based indoor positioning sys-
tem,” Korea Multimedia Society, vol. 7, no. 4, pp. 15–29, 2003.

[33] F.-J. F.Izquierdo, M.Ciurana and E.Zola, “Performance evaluation of a toa-based
trilateration method to locate terminals in wlan,” Jan. 2006, pp. 1 – 6.

[34] M. U.Grossmann and S.Hakobyan, “Rssi based wlan indoor positioning with personal
digital assistants,” Sept. 2007, pp. 653 –656.

[35] S. M.Ciurana and F.Barcelo-Arroyo, “Wlan indoor positioning based on toa with two
reference points,” March 2007, pp. 23 –28.

[36] T. A.Awad and F.Dressier, “Adaptive distance estimation and localization in wsn
using rssi measures,” Aug. 2007, pp. 471 –478.

[37] M. J.G.Castano and M.Ekstrom, “Local positioning for wireless sensors based on
bluetooth trade;,” Sept. 2004, pp. 195 – 198.

[38] G. F.Forno and G.Portelli, “Design and implementation of a bluetooth ad hoc net-
work for indoor positioning,” Software, IEE Proceedings -, vol. 152, no. 5, pp. 223 –
228, Oct. 2005.

[39] J. H.Wymeersch and M.Z.Win, “Cooperative localization in wireless networks,” Pro-
ceedings of the IEEE, vol. 97, no. 2, pp. 427 –450, Feb. 2009.

[40] A.Gopakumar and L.Jacob, “Localization in ultra wideband sensor networks using
tabu search,” Jan. 2008, pp. 99 –102.

[41] a. Z. Z.Tingting, Z.Qinyu, “A two-step toa estimation method based on energy de-
tection for ir-uwb sensor networks,” May 2009, pp. 139 –145.

[42] [Online]. Available: ”http://www.xbow.com/Products/Product pdf files/Wireless pdf/IRIS Datasheet.pdf”

[43] P. F. J.Chen, X.J.Wu and J.W.Liu, “A new distributed localization algorithm for
zigbee wireless networks,” June 2009, pp. 4451 –4456.

[44] F. F. S.Tennina, M.Di Renzo, “On the distribution of positioning errors in wireless
sensor networks: A simulative comparison of optimization algorithms,” 31 2008-April
3 2008, pp. 2075 –2080.

[45] L.Xinrong, “Collaborative localization with received-signal strength in wireless sensor
networks,” Vehicular Technology, IEEE Transactions on, vol. 56, no. 6, pp. 3807 –
3817, Nov. 2007.

iv Bibliography

[46] J.Xiang and Z.Hongyuan, “Sensor positioning in wireless ad-hoc sensor networks
using multidimensional scaling,” vol. 4, March 2004, pp. 2652 – 2661 vol.4.

[47] M.Hui and B.W.-H.Ng, “Collaborative data and information processing for target
tracking in wireless sensor networks,” Aug. 2006, pp. 647 –652.

[48] E. D.Ma and L. Beng, “A comprehensive study of kalman filter and extended kalman
filter for target tracking in wireless sensor networks,” Oct. 2008, pp. 2792 –2797.

[49] C.Mosquera and S.K.Jayaweera, “Entangled kalman filters for cooperative estima-
tion,” July 2008, pp. 279 –283.

[50] L. Boyd and S. Vandenberghe. Upper Saddle River, New Jersey 07458: Prentice
Hall PTR, 1993, vol. 1.

[51] R. S.Ahmad and P.Graham, “Design and implementation of a sensor network based
location determination service for use in home networks,” Oct. 2006, pp. 622 –626.

[52] K.Lorincz and M.Welsh, “Motetrack: a robust, decentralized approach to rf-based
location tracking,” Personal and Ubiquitous Computing, vol. 11, no. 6, pp. 489–503,
2007.

[53] B.Zhang and F.Yu, “An energy efficient localization algorithm for wireless sensor
networks using a mobile anchor node,” June 2008, pp. 215 –219.

[54] E. M.Di and L.H.Beng, “A comprehensive study of kalman filter and extended kalman
filter for target tracking in wireless sensor networks,” Oct. 2008, pp. 2792 –2797.

[55] M. L. H.L.Vu, T.T.Tran, “A simple method for positioning and tracking in wireless
sensor networks,” Dec. 2008, pp. 229 –233.

[56] C.Rohrig and M.Muller, “Localization of sensor nodes in a wireless sensor network
using the nanoloc trx transceiver,” April 2009, pp. 1 –5.

[57] Y. Kim and K. Hong, “An IMM algorithm for tracking maneuvering vehicles in
an adaptive cruise control environment,” INTERNATIONAL JOURNAL OF CON-
TROL AUTOMATION AND SYSTEMS, vol. 2, pp. 310–318, 2004.

[58] C. S.C.Hu, Y.C.Wang and Y.C.Tseng, “A vehicular wireless sensor network for co2
monitoring,” Oct. 2009, pp. 1498 –1501.

[59] Y. V.W.S.Tang and J.Cao, “An intelligent car park management system based on
wireless sensor networks,” Aug. 2006, pp. 65 –70.

[60] [Online]. Available: ”http://code.google.com/p/jposition/”

