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Abstract

This master thesis is covered under the XALOC project approved by the Autonomous Gov-
ernment of Catalonia under the INFOREGIO 2009 program. The purpose of this project is to
develop a vehicle localization and tracking system based on a Wireless Sensor Network which is
used to guide the driver to free parking slots. Every sensor with reference coordinates is placed

in each parking slot. The development of the project consists of two parts:

1. Theoretical development and validation: this part evaluates the positioning as well as
some of tracking algorithms by means of a developed Matlab simulator. The simulator is
implemented with graphical user interface to allow the possibility of simulating by modify-
ing some specified system control parameters. The simulator simulates several predefined
car routes in an urban region as the centre of Barcelona. Real-time vehicle positioning as
well as tracking is carried on when the car is moving. The vehicle positioning is obtained
by means of the RSSI of a specified number of reference sensors and a multilateration
technique (similar to the used in GPS representing the reference nodes as satellites). The
vehicle tracking is realized with the following tracking algorithms: Kalman Filter that
follows a uniform motion model, Extended Kalman Filter that follows the turns and a
weighted combination of both for the overall route with the IMM algorithm. Theoretical

analysis is realized to validate these algorithms for several scenarios.

2. Experimental development and validation: the experimental development deals with the
outdoor real-time positioning and tracking of a mobile node carried inside a car. For that a
Java-based navigator called ARID Navigator is implemented. This navigator shows the
real-time position of the driver on the map of the measurement scenario. The measurement
scenario is located at the Autonomous University of Barcelona’s fire department parking
and a measurements campaign is realized to adjust certain navigator’s parameters. These
parameters are mainly the Kalman parameters. In addition to the driver localization and
tracking, the navigator informs the driver either with graphical or audio interface the
number of free parking slots. Concerning the positioning technique for noisy environments
another improved technique in terms of average position error than the applied in the

theoretical study is developed.






Resum

Aquesta tesis de master estd coberta sota el projecte XALOC aprovat pel govern autonom
de Catalunya sota el programa INFOREGI()/AJUTS 2009. L’objectiu d’aquest projecte és
desenvolupar un sistema de seguiment i de localitzacié de vehicles basat en una xarxa wireless
de sensors la qual s’utilitza per tal de guiar al conductor a trobar aparcaments lliures en zones
urbanes. Cada sensor amb coordenades de referencia es localitza en cada plaga d’aparcament.

El desenvolupament del projecte consisteix en les seglients parts:

1. Desenvolupament teoric i validacié: aquesta part evalua les técniques de posicionament
i seguiment de vehicles miatjancant un simulador de Matlab desenvolupat sota una in-
terficie grafica d’usuari per facil-litar la simulacio amb diferents parametres. El simulador
simula diferents rutes del coche en una regié urbana com la del centre de Barcelona. El
posicionament del vehicle a temps real aixi com el seguiment és dut a terme. Pel que fa
al posicionament, aquest s’obté a partir de les RSSI d’'un nombre especificat de sensors
de referencia amb una tecnica de posicionament similar a la de GPS. Pel que fa al segui-
ment del vehicle aquest es realitza mitjancant certs algoritmes de seguiment: en concret
un Kalman Filter que s’utilitza per seguir les trajectories en moviment uniforme, un Ex-
tended Kalman Filter que segueix els girs del vehicle, i una combinacié ponderada dels dos
a través d'un novedés algoritme anomenat IMM (Interacting Multiple Model). Un analisis

teoric és realitzat per tal de validar aquests algoritmes per diferents escenaris.

2. Desenvolupament experimental i validacié: aquesta part té per objectiu el desenvolu-
pament d’un navegador anomenat ARID Navigator basat en Java. Aquest navegador
mostra la posicié del conductor a temps real sobre un mapa de la zona. L’escenari de proves
es troba al parking de bombers de la Universitat Autonoma de Barcelona i una campa-
nya de mesures s’ha realitzat per tal d’ajustar certs parametres del navegador. Aquests
parametres impliquen parametres del Filtre de Kalman ja que aquest és utilitzat per seguir
la trajectoria del del vehicle en linea recta. A més a més de la localitzacié del conductor,
el navegador informa el nombre d’aparcaments lliures de manera grafica sobre el mapa o
auditiva. Pel que fa a la localitzacié s’ha empleat un metode millor que el que s’ha fet

servir en la validacié teorica quan ’error de posicionament és gran.
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Resumen

Esta tesis de master esta cubierta bajo el proyecto XALOC aprovado por el gobierno auténomo
de Cataluna bajo el programa INFOREGIO /AYUDAS 2009. El objetivo de este proyecto es el
desarrollo de un sistema de seguimiento y localizacién de vehiculos basado en una red wireless de
sensores la cual se utiliza para guiar al conductor a encontrar parkings libres en zonas urbanas.
Cada sensor con coordenadas de referencia se localiza en cada plaza de parking. El desarrollo

del proyecto consiste en las siguientes partes:

1. Desarrollo tedrico y validacién: esta parte evalua las técnicas de posicionamiento y de
seguimiento de vehiculos mediante una interfaz grafica para facilitar la simulacién con
diferentes parametros del sistema. El simulador simula diferentes rutas de un coche en una
regién urbana como la del centro de Barcelona. Se ha llevado a cabo el posicionamiento del
vehiculo a tiempo real asi como el seguimiento del mismo. El posicionamiento del vehiculo
se obtiene a partir de las RSSI de un nombre especificado de sensores de referéncia con una
técnica de posicionamiento similar a la de GPS. En cuanto al seguimiento del vehiculo, este
se realiza mediante algoritmos de seguimiento: en concreto un Filtro de Kalman que se usa
para seguir trayectorias que siguen un modelo uniforme, un Extended Kalman Filter que
sigue los giros del vehiculo, asi como una combinacién ponderada de los dos mediante un
novedoso algoritmo conocido como IMM (Interacting Multiple Model). Un andlisis teérico

es realizado para validar estos algoritmos para diferentes escenarios.

2. Desarrollo experimental y validacion: esta parte tiene por objetivo el desarrollo de un
navegador llamado ARID Navigator basado en el lenguage de programacién Java. Este
navegador muestra la posicién del conductor a tiempo real sobre un mapa de la zona. El
escenario de pruebas se encuentra en el parking de bomberos de la UAB y una campana
de medidas se ha realizado por tal de ajustar ciertos pardmetros del navegador. Estos
parametros implican pardametros del Filtro de Kalman ya que este es utilizado para seguir
la trayectéria del vehiculo en linea recta. Ademaés de la localizacién y seguimiento del
conductor, el navegador informa del nimero de aparcamientos libres de manera grafica
sobre el mapa o auditiva. Para la localizacion, se ha usado un nuevo método mas robusto

que el utilizado en la validacién tedrica cuando el error de posicionamiento es grande.
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Notation

In the sequel, matrices are indicated by uppercase boldface letters, vectors are indicated by

lowercase boldface letters, and scalars are indicated by italics letters. Other specific notation

has been introduced as follows:

~ N(:U’S’O-z)

N(x, P)

argmin
J"7y

B[]

X

X

Fkr, Hkr

Fekr, HEkF

Oz,0u,0Q

u[n] = I'v, w[n]

A certain random value distributed with a Gaussian probability density func-

2

tion with mean ps and variance o

A certain random vector x distributed with a Gaussian probability density

function with mean X and covariance P

Transposition (of a matrix or a vector)
Distributed as

Arguments (z,y) that minimizes the respective cost function

Expectation of -
State vector
Estimate of x

State Kalman Filter Transition Matrix and Kalman Filter Measurement Ma-
trix

Jacobian of the Extended Kalman Filter transition matrix and the Extended
Kalman Filter Observation Matrix

Innovation covariance, Residual covariance, error covariance
Turn rate in /sg applied in the coordinated turn model

Standards deviation of the position measurements, process acceleration noise

and turn rate

Obtained measurements which are given to the KF, EKF or IMM filters

State or process noise vector and Observation noise vector

xx1



xxil Notation

QR Process (state) noise covariance and Observation noise covariance

U Process acceleration noise covariance matrix

P(k|j) Conditional covariance matrix of state at time k given observations through
time j

T Sampling interval

Va Gradient with respect to the vector x

ToT Mode transition probability matrix

A likelihood function

O'ghad Shadowing noise power

Vrssi Path loss exponent used to obtain values of RSSI from the received power
model

Yd Path loss exponent used in the distance computation from the received power
model

T, Sensor activation time in s

1 Identity matrix
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WSN
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BS
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GN
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WPAN
GSM
RSSI
RMSE
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LOS
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MAC
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Chapter 1

Introduction

1.1 Motivation

The actual tendency of wireless communications focuses on the design and construction of small
sensors that are able to sense and communicate with each other via wireless. This is a very
hot topic of research since hundreds of small sensors can be exploited in a large field to obtain
remotely real time information as well as monitoring. Generally a sensor has the capacity to
sense one or several physical magnitudes (i.e. temperature, pressure, force, magnetism). As a
sensor is aware of the physical magnitude several sensors forming a sensor network can be useful
in several fields. For example some applications of WSN ( Wireless Sensor Networks) can be

useful in the following fields:

1. In geology: the monitoring of tectonic plates,the prediction of either a volcanic eruption

or an avalanche.

2. In medicine: the monitoring of patient’s heartbeat or the localization of a patient in a

large hospital

3. In logistics: the tracking and monitoring of the transport packages.

Another application where the WSN can be useful is the localization of free parking slots in
urban areas. Currently in a big town it is quite difficult for the users to find available outdoor
parking places because there is not information to guide the user to find an available parking slot.
The consequence of this fact is the high amount of CO2 pollution launched to the atmosphere
and therefore contributing to an increase of the global world contamination. The idea to built

an efficient car parking management system leads the following advantages:

1. Less time for the users to find an available parking lot.
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Paneles de guiado

Figure 1.1: Guiding panels.

2. Reduction of the fuel consumption and a decrease of the CO2 pollution.

3. Automatic management in non-free car parking (user must pay). In this application the
price associated to the parking time of each car can be automatically computed from a

central site.

4. An efficient car parking management system can provide a reduction of the traffic in a

certain area as the traffic is distributed and it avoids bottlenecks.

5. As the technology used in these applications is a Wireless Sensor Network, positioning of
the parked cars and also real-time positioning or tracking of users that are looking for free
parking places can be carried on to drive the user to those known coordinates stored in the
central site. Therefore geographical routing known as navigation in GPS can be exploited

in real-time.

The motivation of this work is to get into the interesting world of WSN with a new application
useful in outdoor car management systems that uses a WSN to track and to guide the driver to
find a free parking slot. This application allows a user to find a free parking spots in a certain
urban area through a set of indications shown in panels on the street. In order to guide the
driver its real time position is needed. This application uses some positioning strategies which

are introduced briefly in chapter 2.

As an example, figure 1.1 shows a way to guide the users and the information of available
parking slots in each direction. It is useful for the users to find free parking slots if information

is provided to the driver.
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1.2 Objectives

The objectives of this Master thesis are majority covered by the objectives of the XALOC
project which is an e-infrastructure project in the framework of the INFOREGIO program,
funded by the Autonomous Government of Catalonia. The mission of this project which is led
by the company WorldSensing is to develop a platform based on a WSN capable of detecting
outdoor free parking spaces and locating vehicles that carry an on board sensor. The localization
information as well as tracking makes possible to guide the drivers to free parking spaces in the
area of interest by means of panels on the road or notifications to mobile terminals. The goal
of XALOC project is to reduce pollutant emissions thus contributing to a more sustainable

development of cities. The work for the Master project has two parts: theoretical and practical:

e The theoretical part consists on the study and analysis of tracking algorithms with Matlab

simulations that have been carried on with a developed graphical user interface.

e The practical part consists of a development of a navigator based in Java. Several outdoor
measurements are performed to adjust certain parameters in order to track the car that
moves along a road surrounded by sensors. The tracking of the car is done with a simple

tracking algorithm.

Below the objectives of this work are summarized:

—

. Introduction to the Wireless Sensor Networks.

2. Introduction to the current positioning techniques for WSN.
3. Introduction to tracking algorithms.

4. Implementation of tracking algorithms for the target tracking.
5. Simulations and discussions for different system parameters.

6. Implementation of an experimental test-bed consisting of a WSN deployed along a road and
a car that is moving through the road. Furthermore, a Java-based navigator is developed
in order to show the measured real time position of the driver over a map by means of
a positioning strategy based on RSSI (Received Signal Strength Indicator) and a tracking

algorithm.

1.3 Document Organization

This Master thesis is organized as follows:



Chapter 1. Introduction

. Chapter 2 is a state of the art in the field of positioning techniques and tracking algorithms
for WSN.

. Chapter 3 contains the implementation of the set of algorithms with their corresponding

models.

. Chapter 4 deals with several simulations to analyse the performance of the tracking algo-
rithms for different cases. To make easier the management of the software a GUI (Graphical

User Interface) is implemented in Matlab.

. Chapter 5 introduces the design of an implemented Java-based navigator. From the re-
ceived power of a number of specified sensors the navigator computes the real-time co-
ordinates and draws these over map of the measurement geographical area. In addition
to the vehicle localization, the navigator gives information about the free and non free
parking places which are obtained from an external database server. Several outdoor mea-
surements are carried on to find the optimal system parameters that allows to obtain an

accurate and valid navigator for the measured scenario.

. Chapter 6 gives the conclusions of all the carried work as well as the future work with the

intention to follow.



Chapter 2

State of Art

The purpose of this chapter is to give to the reader, a brief introduction about the amazing
world of WSN. These networks can be large with hundreds or even thousands of event-driven
sensors that are placed in remotely regions. Therefore it is needed to localize those sensor nodes
automatically activated by a certain detected event. Hence it means that the coordinates of
that sensor must be discovered. An application example can be the detection and tracking of a
target that enters the sensing range and moves through the sensor field. This chapter is devoted

to provide the reader some of the current localization techniques and tracking algorithms.

2.1 Introduction to Wireless Sensor Networks

Nowadays WSN have become a hot topic for many research entities focused in many real-time
applications such as detection, mobile sensors tracking, localization of events, etc. A WSN is
a kind of Ad-Hoc network with a set of autonomous nodes which are energy-constrained and
interconnected through wireless links. Many research studies are carried on to discover energy-
efficient algorithms that might run in a WSN [17], [18], [19] since sensor nodes are able to carry
some processing. This philosophy is seen in distributed WSN where the processing is shared
among several sensor nodes. Thus it avoids the need of having a single processing unit usually
known as FC (Fusion Center). Figure 2.1 shows an example of a centralized WSN with the
sink acting as a FC and the sensor nodes reaching the FC through multihop. Figure 2.2 shows
another example of a distributed WSN. In this figure several clouds known as nodes clusters can
be seen. In each cluster a cluster head (or leader node) is chosen to carry some processing. The
results computed by each cluster head are sent to the application node through the gateway

node connected to an IP(Internet Protocol)-network.

The architecture of a WSN can be described by following elements [2] [20]:

5
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Figure 2.1: A centralized WSN architecture [1].
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Figure 2.2: A distributed WSN architecture [2].

e Sink nodes are ad-hoc IP nodes with enough computational skills and enough energy to
allow a wired/wireless communication interface to other TCP(Transport Control Proto-
col)/IP data networks.

e Sensor nodes as the shown in figure 2.3 consist by a set of sensing, processing, communi-
cation, actuation, and power units integrated on a single or multiple boards and packaged
in a few cubic inches. These nodes are energy constrained because they are powered by
small batteries such as AA,AAA or watch batteries. However they provide few kilobytes
of memory and a low speed processor unit. These kind of nodes can be classified in two

categories depending on its function:

— Sensors that provide reliable positioning information by the use of a GPS (Global
Positioning system) or already known their coordinates. In the literature these sensors

are referred as anchor nodes, beacon nodes, known nodes or reference nodes. If these
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sensors have a GPS receiver then they must be powered by more powerful batteries
due to the fact that a GPS receiver requires a lot of energy consumption for the

processing. In the example of figure 2.2 these sensors appear at Layer 2.

— Sensors that do not have reliable geographic location information and they are not
equipped with a GPS receiver or a similar positioning device. Due to that precise
geographic coordinates are not available, these nodes must be able to estimate their
relative position by the use of some appropriate localization technique. In the litera-
ture these sensors are called unknown sensors, blind sensors or just sensor nodes. In

the example of figure 2.2 these sensors appear at Layer 3.

Figure 2.3: Crossbow IRIS sensor node [3].

¢ Base nodes which are responsible to gather information from other sensors and to send
it to a central processing unit for the processing tasks. The gathered data can be stored
either in a local or an external database. These kinds of nodes are needed in a centralized

architecture as the shown in figure 2.4.

The drawback of a centralized approach is the communication bottleneck at and near the
central processor [5]. A mitigation of this issue is the use of a distributed or decentralized
scheme where the processing tasks are not only performed at the BS node but the processing
is shared to other nodes. In the distributed approach the whole sensor network is divided into
sets of sensors. Each set forming a cluster contains a cluster head or leader node which is able
to perform processing tasks for its cluster in addition to the processing tasks performed at the
FC [21].

On the other hand, as each sensor node has a processing unit it can be able to perform some small
processing. If all the sensor nodes of the network participate in the processing a cluster-based
architecture may not be needed. However most of the found literature consider the cluster-

approach a good choice [22] [14] [23], specially for distributed target tracking. A comparative
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Figure 2.4: Centralized WSN architecture.

between centralized and distributed architectures is found in table 2.1. Also a comparison is

shown in figure 2.5 in terms of computation operations.

Scheme Base Node | Failure Risk | Cost | Energy efficient | Convergence
Centralized | Needed High High | Low Slow
Distributed | Unneeded Low Low | High fast

Table 2.1: Centralized vs. distributed scheme comparison
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Figure 2.5: Comparison between centralized and distributed architectures with respect to the

number of computational operations for an increasing of the unknown nodes [4].
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As a distributed WSN allows the nodes to exchange data when required, it is common to use
this architecture in collaborative or cooperative WSN. The main advantage of cooperative WSN
is the cooperation between sensor nodes to carry a distributed localization algorithm. Section

2.2.1.2 gives an introduction to localization in WSN.

Central
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O
— —

Central
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Lol & 4 1 7 - 1O 8
Wireless Sensors

— T —3/\‘-- - ' Known Location — K/\}X —

I ./ O | © Unknown Location ‘LO |
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(a) (b)

Figure 2.6: a) Non-cooperative localization: traditional trilateration is a special case in which
measurements are made only between an unknown sensor node and three location aware nodes.
b) Cooperative localization: the measurements made between any pair of sensors can be used

to aid in the location estimate of the unknown sensor[5].

2.2 Introduction to Localization in WSN

Localization of a node in a network appear actually in different environments using wireless
technologies such as WLAN (Wireless Local Area Network), WPAN (Wireless Personal Area
Network), GSM (Global System for Mobile) and more recently WSN. The localization of a node

can be done by means of the following choices:

e Cooperative localization allows the cooperation between unknown sensor nodes to obtain
their positions. For that every unknown sensor must be within the coverage range of
their neighbours. Cooperative localization techniques are useful in scenarios where GPS
can not be used for several reasons. Some of these reasons can be for instance the high
deployment cost or the low coverage from the reference nodes in severe environments such
as urban areas or tunnels. The problem of cooperative localization generally is a 2-D (two-
dimensional) problem as the shown in both figures 2.7 and 2.6. This problem consists to

find the following 2n unknown-location node coordinates [5]:

0, =[z1,...,20), Oy=1[y1,...,Un) (2.1)
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given the known reference coordinates [Zn41,...,Zntm,Ynt1,---,Yntm), and pair-wise
measurements (X; ;) between the nodes i and j that can be any physical reading (such as
ToA(Time of Arrival), AoA(Angle Of Arrival) or RSSI) which indicates a distance or a

relative position.

Figure 2.7: Cooperative localization is analogous to finding the location of (a) masses connected
by a network of (b) springs. First, reference nodes are nailed on a board to their fixed coordinates.
Springs with a length equal to the measured ranges can be compressed or stretched. The
equilibrium point of all the masses (c) indicated by ® represent the minimum-energy localization

estimation [5].

e Non-cooperative whenever the unknown sensors only communicates directly to at least
three reference nodes with known coordinates. For example, GPS use non-cooperative

localization since a GPS receiver computes its coordinates with three satellites.
Localization can be performed by means of of the following requirements:

e Localization techniques
e Communication Technology

e Position Strategy

2.2.1 Localization Techniques

Many existing localization algorithms attempt to solve the problem of determining a node’s
location within a region. These algorithms are based on a localization technique. Different

localization techniques differ in the way how this location is obtained. The choice of a localization
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technique depends on certain factors such as the network characteristics, device restrictions due
to its hardware complexity, nature of the environment (indoor/outdoor), communication costs,

error requirements and device mobility. These localization techniques are classified as:

e range-free schemes estimate the unknown node positions without direct distance infor-

mation [24].

e range-based schemes estimate metrics in the received signal coming from the neighbours

in order obtains the relative distances.

This section discusses both range-free and range-based solutions [25] [5] [2].

2.2.1.1 Range-free localization techniques

This technique assumes that an unknown node cannot obtain distances by direct measurements
but it suppose that exists some physical parameter related somehow with a distance (this re-
lationship may be obscure or unknown) such as the typical RSSI parameter. This kind of
technique does not estimate directly the node position from the RSSI values but it uses a dif-
ferent approach. The idea is the following: each anchor node knows the RSSI (related to the
distance) from the other anchor nodes and broadcasts them to the network. The set of RSSI
values determine a set of concentric coverage circles centred at each anchor node with radius
the distance corresponding to the set of RSSI values. The number of coverage circles is the
same as the number of anchor nodes. Then the unknown node compares the RSSI from every
anchor node with the known RSSI between all the other anchor nodes. This comparison results
in a bounded region covered between those anchors with nearest RSSI from that anchor node
which RSSI is compared. For every anchor a bounded region is obtained and the intersection of
all these regions gives an area where the unknown node is located [2] [6]. It may be better to
explain this with an example. Consider a network composed by three anchor nodes AN;—1 23
and the unknown node called UN. It is assumed that the 7;;, anchor node broadcasts its coordi-
nates (X;,Y;) periodically as well as the RSSI values of the received signals from other anchor
nodes. Furthermore, for every anchor node AN; there are three concentric coverage circles with
radius the distance obtained with the RSSI from the other anchor nodes ANj j+;. The notation
RSSI(A, B) used following is the received power value by node B for a signal transmitted by
node A. Therefore, lower the distance between nodes A and B higher the RSSI value as it is

inversely proportional to distance. Each of the regions is determined as follows:

e First the UN compares its RSSI from the anchor AN; with the RSSI from the other
anchor nodes of the network. If the hypothesis RSSI(AN1, AN2) > RSSI(AN1, UN) >>
RSSI(AN1, AN3) is true then it implies that the unknown node is located in the red ring
(a bounded region between the anchors ANy and AN3).



12 Chapter 2. State Of Art

e Following the UN compares its RSSI from the anchor AN with the RSSI from the other
anchor nodes of the network. If this comparison RSSI(AN2, AN1) > RSSI(AN2, UN) >>
RSSI(AN2, AN3) is true it means that the UN lies in the green ring which is another

bounded region between the anchors.

e The resolve the ambiguity of the two possible regions a third anchor node AN3 is needed.
Then the UN compares its RSSI from the anchor AN3 with the RSSI from one of the other
anchors. If RSSI(AN3, UN > RSSI(AN3, AN1) is true it implies that the unknown node

is found in the lower intersection marked in brown.

Figure 2.9: Granularity of localization regions vs. Range overlap. a)2x2 Grid of reference
nodes. Fewer and Larger localization regions. b)3x3 Grid of reference nodes. More and smaller

localization regions.[6]

Every anchor AN; contributes to make the UN position bounds tighter, due to the intersec-

tion of the set of bounds for every anchor. On the other hand increasing the number of reference
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nodes, the range overlap of them also increase meaning more bounded regions. Therefore the
granularity of the localization regions becomes smaller, and hence the accuracy of the localiza-
tion estimate improves. This explanation can be seen in figure 2.9 [6]. The UN localizes itself
to the connectivity region of this set of K reference points, which is defined by the centroid of

these reference points [6].

(2.2)

Xao+... 4+ X Ya+...+Y
(Xesty}/;st) - ( ! k k: ! L k)

A metric used to know the accuracy of this estimate is the localization error LE(Least
Squares) or RMSE(Root Mean Square Error):

LE =\ (Xeo — Xo)? + (Yot — Ya)? (2.3)

Therefore as more anchor nodes are within the range of the unknown sensor, greater accuracy
in the positioning because more bounding regions will be obtained and hence the final intersecting

area will be smaller. This approach is known as Centroid scheme [6].

Another range-free localization technique is the DV-Hop (Distance- Vector-Hop)[7][25]. The
main idea of this technique differs in the way that the distances from the unknown nodes to
the reference nodes is obtained. This technique uses a similar approach to the classical distance
vector routing algorithms so that all nodes (both unknown and reference nodes) in the network
find the minimum number of hops as well as the direction (related to the shortest path) to
reach a reference node . In other words a routing metric (hop count) is used to measure the
distance (in hops) between a source node and a destination node. Each hop in a path from
source to destination is assigned a hop count value, which is typically 1. The number of hops
is incremented by one if a certain node receives a packet with another destination. Every node
in the network needs to know the 2-D coordinates (X;,Y;) as well as the minimum number of
hops h; to reach the anchor node 1.

The first stage of the DV-Hop algorithm is to find the number of hops from every node to each
anchor node (or reference node). Once an anchor node obtains the number of hops to other
anchor nodes, it estimates an average size for one hop with the use of the following correction

and broadcasts it to the nearby nodes:

o/ (@i — 25)% + (i — y5)?

> hi

HopSize; = ,1 # j,all reference nodes j, (2.4)
being (x;,y;) the 2-D coordinates of the anchor j, and h; the distance in hops from anchor j to
anchor ¢. When an arbitrary unknown node receives the correction from a nearby anchor then

the unknown node computes the distance in meters to the every anchor node with the received
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Figure 2.10: DV-Hop correction example [7].

HopSize correction and the known number of hops obtained at the first stage. At the last stage
the unknown nodes perform trilateration to estimate its position. Following an example is used
to explain the functionality of the DV-Hop algorithm. Consider the network graph shown in
figure 2.10. L1, L2 and L3 represent the reference nodes whereas A is the unknown node that
needs to find its coordinates. L1 has both the Euclidean distance and the number of hops to
L2 and L3,which is 2 and 6 respectively. L1 computes the HopeSize correction with (2.4) which
in fact is the average size of one hope, in meters: (100+40)/(64+2) = 17.5 m. The same does
L2: (40475) / (2+45) = 16.42 m and L3:(754+100)/(6+5) = 15.90 m. The unknown node gets
the average size per hop from one of closest anchor nodes. With this approach, the node A
chooses the correction computed by L2. Once it has the average size of one hop it computes
the distance to L1, L2 and L3 by using the minimum number of hops stored in its database.
Finally the unknown node starts a localization procedure to obtain its own coordinates with the
obtained distances to the anchor nodes. This localization procedure is called trilateration and

it is explained in section 2.2.1.2.

One of the drawbacks of DV-hop is that the network graph must not change,it must be static
in order to compute the number of hops as well as the euclidean distances between anchor nodes.
The advantages are its simplicity and the fact that it does not depend on range measurement
error due to the RSSI variation. There are other algorithms that follow the same approach but
instead of using the number of hops as a metric they uses other metrics such as the RSSI-based
distance or the true Euclidean distance. Some of these algorithms found in [7] are known as
DV-distance or DV-Euclidean.

The accuracy of the DV-Hop with trilateration is dependent on the number of anchor nodes

used to compute the average distance of a single hop. Simulations shown in [26] demonstrate
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that the best accuracy is around 50 m when the anchor ratio is 5%. This accuracy is improved

when the number of anchor nodes increases.

There exist other methods based on the same distance vector approach focused to measure
ranges from an unknown node to neighbours that previously have successfully obtained its
position. Once an unknown node computes its position it broadcasts its computed coordinates
to its neighbours. These distributed algorithms known as iterative or successive refinement are

used to improve the accuracy. The accuracy of refinement algorithms is dependent on:

the accuracy of the initial position estimates

the magnitude of errors in the range estimates

the average number of neighbours

the fraction of anchor nodes

According to [27] the position error is less than 33% in a scenario with 5% range measurement

error, 5% anchor population and an average connectivity of 7 nodes.

Another range-free technique is the Amorphous Positioning based on DV-Hop [25]. It has
a similar approach than the DV-hop algorithm but only differs in the way how the HopSize
metric is computed at the second stage. The first stage of this algorithm is the same as DV-Hop
consisting to find the minimum number of hops to reach the anchors in the received beacons. In
the second stage each node computes locally an estimation of the single hop distance whereas
in the case of DV-Hop the correction is computed only by the anchor nodes. At the third stage,
once the estimated hop distance is obtained the nodes computes the distances to a minimum
of three anchors to obtain its estimated coordinates. The localization procedure at this stage is

trilateration. A more detailed explanation of the algorithm can be found in [28].

This section has covered some of range-free algorithms found in the literature. All of the
range-free algorithms are called as coarse grained localization algorithms because the accuracy
is not good in comparison with the range-based localization methods discussed next. The best
accuracy with range-free algorithms is in the order of meters whereas the best accuracy obtained

using range-based methods is in the order of few centimetres.

2.2.1.2 Range-based localization Schemes

As the name mentions these schemes estimates the distances between every pair of connected
nodes (sensors-to-sensors and sensors-to-anchors) by analysing a metric or any property of the
received signal that depends on the relative positions of the nodes. These ranging metrics are

described following;:
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e RSSI: It is defined as the square of the voltage obtained by a receiver’s circuit that measures

the received signal strength. Also the RSSI is equivalent to the squared magnitude of the
signal amplitude which is the received power. The received power is a function of the
distance between the transmitter and the receiver that is proportional to d=7 , where 7 is
the known as path-loss exponent. The minimum value of 7 is 2 for LOS (Line-Of-Sight)
environments. The path-loss model at a distance d;; from the transmitter j is shown in
(2.5) [5]:
Pr(dij) = Py — 10vlogiodij — vij
(2.5)

dij = \/(zi — 25)* + (yi +y5)?),
where P is the received power (dBm) at 1 m distance and v;; represents log-normal shadow
fading due to the multipath effect in wireless channels. The multipath effect appears when
several signals travel from the transmitter to the receiver through different spatial paths.
These signals arrive at the receiver with a certain time delay V7 and a certain phase
delay V. At the receiver the incoming signals replica are added thus causing either a
constructive or a destructive interference. Despite the simplicity of this ranging metric it
has the main drawback that the RSSI is random due to multipath. The effect of multipath
can be diminished by using a spread-spectrum method (e.g,direct-sequence or frequency
hopping) which averages the received power over a wide bandwidth reducing then the

interference in the unlicensed bands [5].

ToA: Also named Time of Flight is another kind of ranging metric that obtains a distance
estimate by means of the direct signal propagation delay from the transmitter to the
receiver. This metric provides more accuracy than RSSI (in the order of few ¢m) because
it does not suffers variations due to multipath. However the provided high accuracy
implies a complex hardware and synchronized devices with a very good clock precision.
Inaccuracies in the clocks synchronizations translates directly to an imprecise location.
When synchronization is not available or can not be used because of the device hardware
constraints other alternatives can be used. An alternative is the combination of two signals
with different frequencies and hence different propagation speed as shown in figure 2.11
(usually both a RF signal and an ultrasound signal are used). The receiver obtains the
distance by multiplying the difference between the propagation time delay of each incoming

signal with the light speed.

Another alternative is the compensation of clock phase differences, a common practice
known as two-way ranging or round-trip ToA discussed below. Despite the high accuracy
that ToA provides it requires to measure the propagation time delay of the direct signal,
that is, it requires LOS conditions. If the wireless channel is NLOS(Non Line Of sight)

its performance is severely decreased. On the other hand ToA has the inconvenient of
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Figure 2.11: ToA measurement using ultrasound and radio signals [8].

multipath in the sense that many received multipath signals can mask the peak of the
LOS signal. This drawback can be combat by using wider band signals. UWB(Ultra

WideBand) is high-bandwidth technology used common in ToA measurements.

e TDoA (Time Difference Of Arrival): this ranging metric obtains the unknown coordinates
(x,y) by resolving a 2x 2 equations system that takes into account the separation distance
between every pair of nodes with known coordinates. The basic idea is the following: the
unknown device sends a signal at the time instant ¢y = t{, + ¢ being ¢ the synchronization
time error. Then the signal is received to at least three reference nodes at the time instants
Ty =tg+7a, I8 = tog+ 78 and Tg = tg + 7¢. Finally the time difference of arrival is

computed to obtain the unknown coordinates. Mathematically it is formulated in (2.6).

T —to= g/ (z—2:)? + (y — i)
(2.6)

T,-Tj=1 (\/($—$i)2+(y—yi)2—\/l‘2+y2) i=B,Candj = A,

where (z;,y;) is the location of the receiver i, c is the light speed, A, B, C' are the reference
nodes and (x,y) are the coordinates of the unknown node.

This ranging metric is widely used in GPS or in cellular networks in downlink as shown in
the figure 2.12. For this case the user’s terminal (the unknown node) computes the time
difference between the received signals from each synchronized base station. In other cases
it can be that unknown mobile itself sends the synchronized signals to each of the reference
nodes (uplink). As synchronization is needed TDoA presents the same disadvantage than
the ToA technique.

e RToA(Round-trip Time Of Arrival): This metric is also known as two-way ranging metric
because it measures the round trip time between the transmitter and the receiver. Thus
RToA avoids the need to have synchronized clocks which is required by ToA and TDoA

ranging metrics. With RToA, the original sensor transmits a signal at a time ¢y to a
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Figure 2.12: TDoA measurement in celular networks [9].

second receiver sensor, which immediately replies with its own signal. The reply reaches
the original sensor at time ¢, which is the initial time tg plus twice the propagation delay
and an internal processing time of the receiver sensor. The receiver parameter usually is

provided by the manufacturer:

d
te=to+ 27 + A (2.7)

A graphical example of this metric is shown in figure 2.13. The time measurement starts
at node A by sending a package to node B at time ¢y. When node B receives the package it
starts to processing which takes a time A. After processing a reply is sent to node A which
receives the package at time .. Then the distance from node A to node B is obtained from
the difference between t,. and tg. Double-sided two-way is used to avoid the inconvenient

of the clock drift when the processing time is much higher than the propagation time.

AoA: this metric analyse the direction of the arrival signal, rather than the distance to
neighbouring sensors as done in the previous discussed metrics. There are two ways to
measure the angle of arrival as shown in figure 2.14. In any way AoA requires an array
of antennas embedded in the sensor. The first way is based on measuring the phase delay
¢ = 2w f.T of every received signal, being f. the narrowband signal frequency and 7 the
difference in the arrival times for a received signal at each of the sensor antennas. The other
way uses the RSS ratio between two or more directional antennas to find the direction of

arrival that is to find the antenna where the signal is coming from.

This ranging metric requires several antennas embedded at the sensor implying an increase
of both the device dimension and therefore the cost. Hence AoA is not appropriated in a
WSN.
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Figure 2.13: Double-sided two-way ranging technique [10].
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Figure 2.14: AoA estimation methods.(a) AoA is estimated from the ToA differences among
antennas elements embedded in the sensor node. (b) AoA can also be estimated from the RSS

ratio RSS1,/ RSS2 between directional antennas[5].

All of the previous discussed techniques tries to estimate the distances to the reference nodes
(except AoA) at the first stage. At the second stage, the unknown node estimates its relative

position by means of the following procedures known as trilateration or multilateration:

e Trilateration/multilateration: this technique shown in figure 2.15 is valid only in direct
communications between unknown sensors to anchors. The main idea of this technique is
to find those coordinates (x, y) where a set of n corresponding circles to n anchors intersect.
If n = 3 the procedure is known as trilateration whereas if n = 3 the procedure is known
as multilateration. The unknown node obtains the distances d; and dy from the anchors
AN and AN, with the RSSI. A third ANj3 anchor node is needed to solve the ambiguity

of the two possible locations determined by the two circle’s intersections.
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Figure 2.15: Trilateration using distance measurements. The circles represent the coverage area

of the sensor nodes [2].

According to 2.15 the unknown coordinates (x,y) can be find by solving a set of linear

equations that represent the circle equations shown in (2.8).

Vi —2)24+ (y—y)2=d; for i=1,23, (2.8)

where d; is the measurement distance between the unknown sensor and the anchor 7 with
coordinates (z;,y;). Notice that the only parameter in (2.8) that can affect the accuracy of
the location error is the measured distance. It is known that the accuracy of the estimated
distance is dependent on the used ranging metric. The accuracy of the measured distance
by the RSSI being the worst ranging metric can be increased if the same approach in
(2.8) is realized with more than three anchor nodes. It known as multilateration and the

problem which is generalized to N anchor nodes focuses to solve the following [2]:

N
2
i=1
where wi,we, ..., N are positive weights that emphasize the most reliable measurements

(e.g, they can be 1/0 or any other quantity directly related to the quality of the radio link).

The minimization of (2.9) is an unconstrained optimization problem in the unknowns (x, y).

(Z,9) = argmin C(z, y) (2.10)
Y
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Finding the solution of (2.10) is a difficult nonlinear optimization problem. Therefore
some suboptimal approximations can be used to transform the nonlinear problem in a

linear problem [2]. Thus, squaring (2.8) and defining the following variables:
R=22 42
(2.11)
Ri:x?—i—y? , 1<i <N
results in the following system of equations:
2z —2yy+ R=d? - R; ,1<i<N (2.12)
which are linear in (z,y, R) and thus can be written in a matrix form:
Az =D, (2.13)

where:

—2x1 —2y1 1

2wy —2p 1
A=| TR T (2.14)

—2£CN —2yN 1

b=[d2—Ry,d3—Ry,...,d% — Ry]"
Now the solution of (2.13)is computed below by WLS( Weighted Least Squares):
2 = argmin(Az — b)TW(Az — b)

z

(2.15)

The solution of (2.15) can be seen in (2.16) which gives the estimation (Z,y) as the first
Z:

and second components of the vector

7= (ATWA)'ATWbD (2.16)
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One the one hand notice that this method is fully centralized because all the variables
(distance measurements) are combined in a central processing unit to perform localization.
On the other hand multilateration can provide better accuracy than other range-based
techniques since more anchors nodes with known positions and optimal weights can be
used together to find the unknown coordinates. However this technique is valid when the

sensor nodes are in the coverage area of the anchor nodes.

2.2.2 Communication Technology

The accuracy in the location error is dependent on the other factors in addition to the used

localization localization techniques. The communication technology is also a very important

requirement for localization in WSN. This section discusses some of the current wireless com-
munication technologies and their impact in WSN: WLAN, Bluetooth, UWB,and ZigBee [11].
In principle they can be applied in WSN because their range is short.

e WLAN: this wireless technology was developed to provide wireless communication in the

unlicensed ISM(Industrial, Scientific and Medical) band of both 2.4 GHz and 5 GH z to the
original LAN(Local Area Networks) networks which computers communicated by means
of wires. The WLAN specifications are found in its standard IEEE 802.11. This standard
is kept by the WiFi Alliance organization providing interoperability between devices from
different manufacturers. These specifications adapts the physical and MAC(Medium Ac-
cess Control) layer of the original Ethernet protocol to provide communication through
air. The following family of WLAN standards are extended in a lot of places to provide

wireless communication to hundreds of users:

— IEEE 802.11g: this standard is an amendment of its predecessor, IEEE 802.11b
which was based on either on DSSS(Direct Sequence Spread Spectrum) with a gross
throughput upto 11 Mbps. The allowed bandwidth in both 800.11g and 802.11b is
20M H z and the non-overlapping channels in the 2.4 GHz band are 1, 6 and 11. The
physical layer of 802.11g is based on multiple carrier or OFDM( Orthogonal Frequency
Division Multiplexing) with digital constellations BPSK(Binary Phase Shift Keying),
QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation)
and 64QAM. This improvement in the IEEE 802.11g physical layer leads to a gross
throughput upto 54 Mbps when using the 64QAM constellation. The coverage is
up to 300 m which can be improved by means of directive antennas and powerful

transmitters.

— IEEE 802.11n: it is a recent amendment which improves both the throughput and
the coverage of the previous 802.11 standards by adding more than one antenna at

the transmitter and at the receiver. The last is called multiple-input multiple-output
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(MIMO) with notation M x N which means that the input to the wireless channel
is through M antennas whereas the output is from N antennas. Several antenna
configurations cane be considered: 2x2,2x3,3x3. Another improvement with respect
to the previous standards is its ability to operate under the both both bandwidths
20 M Hz and 40 M H z. This standards specifies a maximum gross throughput of 600
Mbps under the assumption of having 4 spatial streams, 64QAM constellation, 40
M Hz channel bandwidth and GI(Guard Interval) of 800 ns.

Several positioning/tracking experiments with WLAN technology have been carried on,
although most of them in indoor scenarios [29][30][31][32]. The set of ToF and RSSI ranging
metrics have been proved for localization in WLAN [33][34][35]. Taking the advantage that
ToF performs better than RSSI in terms of a reduced location error (in order of cm), its
inherent hardware complexity can be exploited in WLAN networks as they are not energy-

constrained as happens in WSN.

e Bluetooth known with its standard IEEE 802.15.1 is the set of the physical and MAC layer
specifications for a WPAN. A comparison with respect to WiFI is the following:

— Less coverage: this parameter depends on the bluetooth chipset class. Class-1 with
a range of 100 m and a maximum allowed power of 20 dBm, Class-2 with a range of
10 m and a maximum allowed power of 4 dBm and Class-3 with 1 m of coverage and

0 dBm of transmit power.

— Less throughput: the nominal transmission speed can reach upto 1 Mbps (in practice
around 720 Kbps) with the Bluetooth Version 1.2 and upto 3 Mbps (in practice
around 2.1 Mbps) with the enhancement Bluetooth 2.0+EDR (Enhancement Data
Rate).

— Pysical layer was based on FHSSS(Fast-frequency Hopping Spread Spectrum) and the
modulation GFSK(Gaussian Frequency Shift Keying) in older versions. Newer ver-
sions use a combination between the modulation GFSK and either of the modulations
m\4-DQPSK (at its lower rate of 2 Mbps) and 8DPSK (at its higher rate of 3 Mbps).
The same ISM frequency band is used: 2.4 GH z.

— Lower energy consumption (in the order of mA even in stand-by mode), cheaper and

smaller devices.

Bluetooth has the main advantage that can be used to transfer data between small devices
such as mobile phones, PDAs; game consoles in areas without WiFI coverage. Currently
most of the personal devices carry bluetooth chipsets. Bluetooth technology is a better
choice than WiFI for WSN since it provides less energy consumption and less throughput

(a high amount of resources is not needed in WSN). Several applications using bluetooth
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Figure 2.16: a)Zigbee networking topology, b)Zigbee operating frequency bands [11].

with RSSI in WSN have been carried on to perform localization as it does not require
extra hardware. [36][37][38].

UWRB [5]: this wireless technology employs radio signals composed by narrow pulses of
very short duration (the order of nanoseconds). In the frequency domain it corresponds
to a bandwidth greater than 500 M Hz. Some of the standards that cover UWB are IEEE
802.15.3a and IEEE 802.15.4a. Furthermore, UWB provides high data rates (at least 480
), low power consumption and low cost but at the expenses of very low range. Digital
home applications as well as other applications requiring short range can take advantage
of this broadband wireless technology. The very high bandwidth of UWB in comparison
to the other wireless technologies leads to a very high temporal resolution making it ideal
for high-precision radiolocation applications. Therefore the use of UWB with the ranging
metric ToA leads to a very high accuracy (the order of few c¢m). Several localization
applications with UWB in WSN are reported in [39][40][41].

Zigbee technology provides low data rate, low power consumption, low transmit rate,
low cost and mainly it is addressed to remote control applications. The standardization
of Zigbee is IEEE 802.15.4 specifying several network topologies such as mesh, star and
P2P(Point to Point). The physical layer is based on DSSS and the range per node can
be upto 500 m in LOS conditions [42] depending on the transmit power and the used
antenna. Another interesting feature is the use of IPv6 (IP version 6, that is a 128-bit IP
address with the least significant 64-bit for host addressing) allowing to form a network of
thousands or even million of devices. The adopted standard defines different frequencies
supported by Zigbee each of them corresponding to a certain number of channels and a
throughput: 16 channels at 2.4 GH z offering 250 Kbps, 10 channels at 915 M H z offering
40 Kbps and 1 channel at 868 M Hz offering 20 Kbps. Figure 2.16 shows two kinds of

network topologies as well as the supported operating frequency bands.

Since May 2003 Zigbee is under the tutelage of Zigbee Alliance upon which Zighee devices

and applications are constructed. Furthermore Zigbee is more attractive than Bluetooth
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for WSN because the energy consumption is much lower (the order of pA in standby

mode). Following it shows the general Zigbee/804.15.4 features:

— Dual PHY (2.4 GHz and 868/915 M Hz)
— Data rates of 250 Kbps (2.4 GHz), 40 Kbps (915 M H~z), and 20 Kbps (2.4 GHz)

— Optimized for low energy consumption (< mA)

Zigbee is widely used in several WSN applications. In the context of positioning zigbee
has the drawback of a bad clock resolution being inappropriate the use of ToA ranging
techniques. Taking the advantage of the RSSI circuitry simplicity, it can be used to perform
localization. Some practical experiments demonstrate location errors in the order of a few

centimetres or a few meters [43][10][44].

2.2.3 Positioning strategy

This section is addressed to give an explanation of the different positioning strategies that
can be used in WSN. As explained in section 2.1 there are two positioning strategies to be
considered: non-cooperative and cooperative. In the non-cooperative the unknwon nodes have to
communicate with at least three reference nodes to obtain the 2-D coordinates or 4 anchor nodes
to obtain 3-D coordinates. It happens in GPS. With this strategy the problem of obtaining the
coordinates can be solved with the known trilateration/multilateration. However this positioning
procedure can be carried with the requirement that the unknown nodes must receive signals
from the anchor nodes of course with a power greater than its sensibility. This requirement
makes difficult the use of this non-cooperative strategy in those scenarios where only few anchor
nodes can be positioned in a large area of sensor networks. In order to combat this issue a
cooperative strategy can be taken into account. In cooperative scenarios every node in the
network cooperates with all of its neighbours to carry on the positioning, for example measuring
the pairwise distances. This strategy is preferable in most of the WSN scenarios since more
unknown nodes than anchor nodes are distributed in big geographical areas like a forest and
also there can be nodes without direct communication to the anchor nodes. On the other hand
the cooperative strategy allows the use of two anchor nodes instead of three. By allowing the
cooperation between nodes, the ambiguity that appears in non-cooperative with two anchor

nodes is solved by the pairwise distances measurements. It is shown in figure 2.17.

When considering cooperation, the adopted algorithm can be classified in both centralized
and distributed:

1. Centralized Algorithms: these algorithms require that all the unknown nodes send their
distance measurements to a central processing unit which runs a centralized algorithm. The

centralized algorithm computes the relative positions of all the unknown nodes. Finally
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Figure 2.17: a)Network with three anchor nodes and two unknown nodes, b) Ambiguity existing

in non-cooperative strategy when using only two anchor nodes, ¢) The ambiguity disappear when

cooperation between nodes 3 and 4 is allowed. As observed only one of the green circumferences

intersects with one of the blue circumferences in b).

the algorithm applies a transformation operation given the coordinates of the anchor nodes
to find the absolute positions. Once the algorithm computes to absolute positions, these

results are sent back to the queried nodes.

The centralized approach has the advantage that can perform complex calculations or even
iterative complex calculations because the fusion center does not have energy/hardware
constraints as it happens in the sensor nodes. However a disadvantage of this strategy is
that all nodes must reach the central processor unit with the consequence of having an
increase of the network traffic and a possible bottleneck near or at the fusion center. On the
other hand, the performance of the whole network depends on the robustness of the central
unit. Currently there are two suitable centralized algorithms for large-scale networks with
low density deployment of reference nodes: MLE(Mazimum Likelihood Estimator) and
MDS(Multilateration Scaling) [45]:

e MLE assumes that the statistical of the data is known and can be described with a
statistical model (e.g.,Gaussian or log-normal). MLE is theoretically optimal in the
sense that it is asymptotically efficient when the SNR(Signal To Noise Ratio) ratio
increases. When the network is large, the number of unknown parameters (the 2-D
unknown coordinates) increase in a factor of 2N being N the number of unknown
nodes. Thus it may not be computationally feasible to determine the solution of
MLE by using brute-force grid-search method [45]. In these cases the MLE must be

solved using iterative nonlinear algorithms such as the NLS(Non linear Lest Squares).
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Iterative algorithms have the drawback that they depend on the initial value and in
general they need a well-conditioned matrix to assure a convergence. Unless the MLE
is initialized to a value closed to the optimum it is possible that the algorithm does
not find the global optimum [5]. Hence convex constraints are presented to force the
unknown sensor’s location within a radius r and/or angle range from another sensor.
Thus the MLE can be treated as a convex optimization problem. Another additional
problem related to MLE is the statistical model dependency with the measurements.

MDS combats these problems.

e MDS algorithms are widely used in many areas, including statistics, psychology, soci-
ology, political science and can be used as well to formulate sensor localization from
range measurements as an LS problem [45]. These algorithms consists of two stages:
the first stages the MDS finds those locations that minimizes the mean square error
with the given pairwise distances of all nodes in the network. The coordinates or
relative positions found by MDS in the first stage are in a different coordinate system
than the true given by the anchors positions. Thus a second stage is required which
applies a transformation operation to the relative positions to obtain the absolute
positions in the true coordinate system. Other MDS-based techniques use a weight-
ing scheme for the measurements according their accuracy, and thus improving the

localization error [5].

2. Distributed Algorithms: in contrast to the centralized algorithms these algorithms do not
consider the use of a central unit to handle the calculations. Each node must compute
its own position with the support of its neighbour nodes. It provides an advantage to the
centralized algorithms since each node obtains faster its position as it does not need to
reach and wait for a result from the fusion center that could be far away. Other advantage
is that the positioning can be performed even if the size of the network increases. However
these algorithms need to run several iterations to find an accurate estimate. Distributed

algorithms for cooperative localization generally fall into one of following categories [5]:

o Network multilateration: each sensor estimates the shortest path distance through
multi-hop algorithms to at least three visible reference nodes. Once the distances are
obtained multilateration technique is carried on. Examples of these algorithms are

the well known range-free algorithms DV-hop discussed in section 2.2.1.

e Successive refinement: these algorithms known as non-Bayesian algorithms try to find
the coordinates of all the unknown nodes in the network with an iterative procedure.
Initially there are two subsets of nodes: one subset A with known nodes locations
and another subset B with unknown nodes locations. At each step those nodes in the
subset B which can measure the RSSI from a minimum of three other nodes in the

subset A compute multilateration to obtain their positions. Once they found their
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positions they become new members in the subset A. This procedure which is known
as IMM(Iterative Multilateration)[45] is repeated for all the unknown nodes until the

subset B becomes empty.

The convergence of these algorithms is always a drawback and on the other hand the

global accuracy depends on the local results computed by every node.

Most of the centralized and distributed algorithms must face the high relative costs of commu-
nication. Centralized algorithms in large networks require each sensor’s measurements to be
sent over many hops to a central processor. In contrast with the distributed algorithms the
sensors send messages only one hope (to its direct neighbours). However these algorithms re-
quire a certain number of iterations to converge until all nodes obtain their accurate positions.
Distributed algorithms performs better than centralized when the number of iterations is less
than the average number of hops [5]. There exist hybrid algorithms that combine both cen-
tralized and distributed to reduce the energy consumption per node. These hybrid algorithms
are applied when the network is fractioned to a group of clusters. Recall that a cluster in a
distributed WSN is a set of nodes with one selected candidate called manager node or cluster
head to be the local processor unit. As an example a Bluetooth piconet can be seen as a cluster
with one master and several slaves. Each manager node carries out centralized algorithms by
using the gathered data from the nodes in the cluster where it belongs and thus estimating a
map of the cluster. Then a distributed algorithm is executed taking the computed results from
all the manager nodes to merge and optimize the local estimates such as described in [46]. Such
hybrid algorithms are a promising topic for future research. There are applications that use the

concept of clusters for target tracking issues[22] [47].

2.3 Introduction to tracking techniques for mobile nodes

All the localization techniques discussed in previous sections are focused only in scenarios without
mobility. For example, multilateration, MDS and MLE can not be applied to locate a set of
one or more mobile unknown nodes. The term positioning usually is referred for fixed points.
There exist a lot of algorithms for tracking but the most common and used in practice are
two: KF(Kalman filter) and EKF(Eztended Kalman Filter) [10][48][49]. The main differences
between them is how they make the assumption of the signal model: linear in Kalman filter and
nonlinear in Extended Kalman filter. This section gives a brief introduction to these tracking
algorithms [50].
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2.3.1 Kalman Filter

The system dynamic model used by Kalman filter is the first order Gauss-Markov model which
has the form shown in (2.17):

z(k+1)= f(z(k)) +uk) k+1>0, (2.17)

where u[n], called the process noise, excitation noise or model noise is WGN( White Gaussian
Noice) with variance 02 ~ N (i, 02). On the other hand x[—1] corresponds to the initial state
of Kalman and it is independent of u[n]. In the context of Kalman filter the equation in
(2.17) is called as state space model which estimates the state at the next time sample. It
is clear that with only one sample it cannot obtain an estimate of the temporal tendency of
the signal. It needs all the stored samples from n = 0 up to n = n — 1. In other words,
Z[n] is an estimation based on the previous observations or measurements consisting of a scalar
sequence {z[0], z[1], ..., z[n]} with n increasing. Such operation is referred as filtering because the
previous data is filtered to obtain the actual state. Therefore, Z[n] is a recursive estimator which
is based on the sequential Bayesian MMSE(Minimum Mean Square Error) estimator. Under
the Gaussian assumption for the initial state and all the noises entering into the system, the
Kalman filter is the optimal MMSE state estimator. If the initial state is not Gaussian then
the Kalman filter algorithm is the best LMMSE(Linear Minimum Mean Square Error) [12].
Furthermore the scalar observation can be extended to vector observations (z[0],z[1],...,z[n])
and also the scalar state can be extended to vector state x[n] = Fx[n — 1] + u[n]. Summarizing
to a more (not the most) general case when both the state and observation are vectors, which

is the most common in practice:

x(k + 1) = Fx(k) + G(k)u(k)
k+1>0 (2.18)
z(k+1) =H(k+ Dx(k+1) +w(k + 1),

where x(k+ 1) is the p x 1 signal vector, z(k+ 1) is the M x 1 measurement vector and F, G, H
are known matrices of dimensions p X p, p X r and M X p, respectively. The matrix F is called
the transition matrix, as it does the transition operation from the previous state to the current
state and the matrix H is known as observation matrix. It can be seen in (2.18) that the
process noise vector G(k)u(k) ~ N(0,Q) has dimensions p x 1. Moreover this process noise
is independent from sample to sample because it is WGN but is dependent of the noise vector
v. On the other hand the observation noise vector w(k + 1) ~ AV (0,R) as well is a WGN with
dimensions M x 1. The matrices Q and R are called the process noise covariance matriz of the

process noise G(k)u(k) and measurement noise covariance matriz of the measurement noise w.
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The MMSE estimator of x(k + 1) based on (x(k),x(k —1),...,x(—1)) or also defined as:

f(k+1|kk—-1k-2...,-1)=BExk+1) | x(k),x(k—1),...,%x(—1)) (2.19)

can be solved through the following two Kalman stages that minimize the mean square error.

1. Prediction stage: this stage predicts the current data based on the previous x[n—1], n > 0
gathered data. This prediction is applied to the state vector of dimensions p x 1 and also
to the MMSE matrix of dimensions p x p. The set of involved equations are (2.20) and
(2.21).

State Prediction:

%(k+1|k) =Fx(k | k) + G(k)u(k) (2.20)

State Prediction Covariance (p X p):

P(k+1]k)=FP(k|k)F + Q(k) (2.21)

2. Correction stage: this stage minimizes the measurement residual between the measurement
z(k + 1) and the measurement prediction z(k + 1 | k) with the Kalman gains. The set of
equations used in this stage are (2.23),(2.24) and (2.25).

Innovation Covariance (p X p):

Sk+1)=R(k+1)+H(k+1)P(k+1|kH(k+1) (2.22)
Filter Gain (p x M):

Wk+1)=Pk+1|kH k+1)Sk+1)"" (2.23)

Updated state estimate:

R(k+1|k+1)=%k+1|k)+W(k+1D(=z(k+1)—HE+DR(k+1]k) (2.24)

Updated state covariance (p x p):

Pk+1|k+1)=Pk+1|k) —W(k+1S(k+1)W(k+1) (2.25)

P(k+ 1| k) can be seen as a priori estimate state covariance matrix whereas P(k+1 | k+ 1) is
a posteriori estimate state covariance [13].The Kalman gain matrix W is recursively found such
that the posteriori error covariance matrix is minimized. Also W can be seen as a weighting

factor that reflects the relative accuracy of the predicted state versus the new measurement [12]:
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e If the new measurement is deemed to be "more accurate” (low variance) than the predicted

state(large variance), then the filter gain will be relatively high.

e If the predicted state is deemed to be "more accurate” (low variance) than the new mea-

surement, then the gain will be relatively low.

Figure 2.18 offers a complete block diagram of the operation of the filter with the set of involved

a priori and a posteriori estimates.

Evolution Known input o )
of the system {control or Estimation State covariance
(true state) sensor of the state computation
motion)
State at ¢, Input at ¢, State estimate at 1, State covariance at ¢
z(k) u{k) (klk) Plklk)
) Transition t0 ;. ., State prediction State prediction covariance
TN
gk 1) = Flkjz(k) [ Rk + k) = Plk = 1k) =
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Figure 2.18: Kalman filter operation [12]

2.3.2 Extended Kalman Filter (EKF

In practice the state space and/or the observation equation can become nonlinear. In these
cases the Kalman filter can not be applied since its closed expressions were obtained assuming
that state space model and the observation equations are linear. An example where extended
Kalman filter can be applied is the following: consider a tracking problem when the estimated

measurements are both the range R[n] = R[n] + wg[n] and the angle § = § 4 wy formed
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between the 2-D coordinates (r;[n],ry[n]) that must be found. The relationship between the

noisy measurements and the unknown parameters is shown in (2.30).

Rik+1) = /r3(k +1) +r3(k + 1) + wr(k +1)
(2.26)

B(k +1) = arctan :3%:13 +wg(k + 1),

where 7,(k+1) and ry(k+1) are directly related to the known velocity (vz(k+1),v,(k+1)), the
time interval transcribed between samples A and the initial position (r;[0],r,[0]) of the mobile

target in the form of:

ro(k + 1) = vy(k + 1)A + 7, [0]

(2.27)
ry(k+1) = vy(k +1)A +r;[0]
The equation (2.27) can be related to the first Gauss Markov process as:
re(k+1) =rgy(k+1]|k)+ rg[0]
(2.28)

ry(k+1) =ry(k+1|k)+r[0]

Clearly it can be seen that the expression in (2.26) is nonlinear in range and bearing. Therefore
it cannot be expressed in the form of the following linear model as in the case of the Kalman
filter:

x(k+1) = F(k)x(k) + G(k)u(k)
(2.29)

zlk+1)=Hk+ 1)x(k+1)+w(k+1)

Therefore the extended Kalman filter applies when the process/state model and/or observa-

tion/measurement model are nonlinear in the form of (2.30):

x(k+1) = f(x(k)) + G(k)u(k)
(2.30)

z(k+1)=hx(k+1)) +w(k+1),
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being f a p-dimensional function and h an M-dimensional function. The dimensions of the
remaining matrices and vectors are the same as before. Again f(x[n — 1]) represents the theoret-
ical model and h(x[n]) is the transformation operation from the predicted state to the predicted
measurement. Clearly MMSE cannot be applied directly because it applies to linear problems.
The used approach is to linearize both equations with the first-order Taylor expansion so that

the linearised state space model and the observation equation become linear:

x(k + 1) = F(k)x(k) + G(k)u(k) + (F(&(k | k) — F(k)%(k | k))
(2.31)

z(k+1) = H(k + )x(k + 1) + w(k + 1) + (H(&(k + 1| k) — H(k + Dx(k + 1| k)).

The new linearised equations in (2.31) differ from the original ones in (2.29) in that F is now
time varying and both equations have known terms added to them. Therefore the set prediction

and correction equations for the extended Kalman filter are described following [12]:

1. Prediction stage.

State Prediction:

%(k+ 11 k) = £k, %(k | k), u(k)] (2.32)

State prediction covariance (p x p):

P(k+1]|k)=F(k)P[k | k)F (k) + Q(k) (2.33)

2. Correction stage:

Residual covariance (p x M):

S(k+1)=R(k+1)+H(k + 1)P(k+ 1| k)H(k + 1)’ (2.34)

Filter gain (p x M):

W(k+1)=Pk+1|kHE+1)Sk+1)7! (2.35)

Updated state estimate:

REk+1]k+1)=%(+1|k)+W(E+1)(z(k+1)—h[k+1,%(k+1|k)]) (2.36)

Updated state covariance (p X p):

Pk+1|k+1)=Pk+1|k)—W(k+1DS(k+1)W(k+1) (2.37)
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being

F(k) = 98 Lexaup)
(2.38)

H(k+1) = m‘%’iﬁ” |x=%(k-+1]k)

Notice that in comparison with the Kalman filter the gain and covariance matrices must
be computed on-line as they depend upon the state estimates through F(k) and H[(k + 1).
Moreover the term MSE matrix is not the real one since an approximation has been realized.
To finish this section figure 2.19 offers a summary of the seen equations (2.32)-(2.37), the same

as the Kalman filter shown in figure 2.18.

An example of EKF applied to vehicle tracking can be found in section 13.8 of [13]. Appli-
cations of both KF and EKF for target tracking are shown in chapter 3 and some simulations

showing their behaviour for target tracking in a practical scenario can be shown in chapter 4.

2.4 Literature Review

This section is a collection of some of the works done by other entities which are related to
both cooperative positioning and tracking in wireless sensor networks. Then this section is
divided in three other sections: cooperative positioning, tracking and applications in WSN. The

applications section is a general overview of where WSN can be used.

2.4.1 Cooperative Positioning in Wireless Sensor Networks

The average location error is an important parameter for comparison between different localiza-
tion techniques or algorithms in the WSN localization field. The people in [51] present a home
application based on centralized WSN and they show measured location errors. In this paper
they discuss the design, implementation and evaluation of a RSS-based location determination
system. The implementation includes three components: the location determination system
which adapts and extends Motetrack [52] for in-home use, a location storage system (central-
ized architecture) that receive messages from the unknown nodes and a user interface to allow
home applications to get both current and historical. The anchor nodes are placed in known
positions and they send beacon messages periodically containing the power level in addition to
other parameters. The unknown node is moving randomly as it is carried by home residents.

The position computation is carried with two phases:

1. Initial data collection phase: at the deployment setup the mobile unknown sensor sends
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to the location storage system all the received beacon messages including the computed
RSSI values. All the beacon messages are recorded in a reference database which is used

in the the normal operation.

2. Normal operation: during this phase the anchor nodes send periodically beacon messages
in the same way as during the data collection phase. When mobile unknown sensors
receive beacon messages they find a match of the received beacons against entries in the
reference database. Then the node’s current location is calculated as the center of the of

the matching reference-points using the centroid approach explained in section 2.2.1.1.

The system uses Crossbow Mica2 and Mica2Dot sensors to provide 28th, 50th, 85th and 97th

percentile location errors of under 1, 1.5, 2 and 3 m, good for room level accuracy.

The work by [51] estimates the position of mobile unknown nodes with fixed anchors. There
are works based on range-free schemes that computes the location in a different way by means of
geometrical approaches. For example a proposed technique based on several mobile anchor nodes
is proved in [24]. Each anchor node moves inside the sensing field and broadcasts its current
position periodically. The location estimation algorithm is based on the geometry conjecture
(perpendicular bisector of a chord) [24]. What does this means? Consider that the transmission
range of an unknown node is a circle and the centre of the circle are the coordinates of the
unknown sensor node. Consider also that a mobile anchor node broadcasts its position in its
beacon messages every sampling time while it is moving randomly through the sensor field and
at time t; the mobile anchor enters to the coverage circle of the unknown node. The unknown
sensor stores in a database both the RSSI and position of the mobile anchor for each received
beacon. Then the unknown sensor uses the the coordinates A and B associated to the first
and last values of database in the circle in order to form a chord. Another point is needed in
the circle form another chord. The conjecture states that a perpendicular bisector of a chord
passes through the centre of the circle. If any two chords are obtained, the location of the sensor
node can be easily computed as follows. First the set of linear equations corresponding to the
perpendicular bisectors of each chord is formulated. The number of unknown is the same than
the number of equations. Then the Cramer’s rule is used to find the unknowns (z,y). Coming
back to the paper [24] they demonstrates that this range-free technique is able to achieve fine-
grained accuracy with an average location error of 0.74 m in a 100x100 m? sensor field. Their
technique is robust against obstacles getting errors of 3.82 m in the average. Furthermore, this

technique is distributed because the computation is performed locally and also it is scalable.

Despite of the good accuracy provided by [24] their algorithm is not energy efficient as
being evaluated by [53]. It is said not energy efficient because the unknown sensor nodes are
continuously listening for beacon messages containing the locations of the mobile anchors when

only two beacons are needed. An energy efficient localization algorithm is more important than
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an algorithm that requires more power consumption although the provided accuracy is greater.
In [53] is presented a range-based localization algorithm with the TDoA as a ranging metric
and an ultrasound signal to obtain the signal propagation time travelling at the light speed and
so the distance can be easily computed. Although the obtained accuracy is 0.82 m in a sensor
field with dimensions 500x500 m? which is greater than the obtained by [24] their localization
algorithm based on the Newton iteration method is more energy efficient because only three
three anchor location points with a SNR higher than a specified threshold are recorded. By
simulation the energy consumption due to packet reception is always below 0.5 megajoules with
their proposed method whereas the energy consumption using the method in [24] is upper 1.75

megajoules, for any packet transmission interval.

The ranging metric used by [53] is more expensive than other cheaper ranging metrics such
as RSSI contributing to the deployment cost of the network. In other words each node would
need a TDoA external circuitry to compute the signal propagation time as well as an ultrasound
transmitter /receiver. Localization with RSSI is a very cheap solution because nodes are able to
measure the received signal strength which is related to the geometric distance from the anchor
nodes. Although RSSI values are quite random due to shadowing and multipath effects it is
possible to obtain better accuracy in good scenarios as demonstrated by [36]. They discuss and
analyse some RSSI-based techniques studying different factors (antenna orientation, transmit
power and frequency variation) that affect the measured RSSI values or the estimated distances.
For the experimental tests they develop a prototype based on BTnode sensor nodes that includes
the following components: a Bluetooth interface with a 433-915 M H z low power radio chip (5
dBm of transmission power) and the mobile robot system Robertino where one sensor node
is located at the top acting as an anchor node. They focus to examine the short range RSSI
deviations under standard conditions for indoor localization. The used ranging metric is the
RSSI and the localization procedure is based on multilateration. They obtain location errors of
0.80 m in the worst cases and 0.54 m in the best cases both using linear regression on the RSSI

data measured in an area of about 3.5x5.0 m?2.

2.4.2 Tracking in Wireless Sensor Networks

The presented literature right now is a general perspective on the different positioning techniques
existent in WSN. A general case of positioning is tracking or navigation where the localization
computation of a mobile unknown node position is carried on in each sampling time. In this
case the unknown sensor node can move with a uniform motion, an acceleration motion or both
together. There are several practical or theoretical papers focused on tracking in WSN and they

are presented following.

At first a simulations based comprehensive studies comparing the performance of KF versus
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EKF for target tracking in WSN are carried on by [54]. The authors of this paper compare
the effectiveness, limitations and other related implementation issues in applying KF and EKF
for target tracking in WSN assuming that the system dynamic model and/or the observation
equation might be linear or nonlinear depending on the specific scenario. The work shown in the
paper puts in practice KF and EKF in different scenarios: 1) the state space model is nonlinear
and 2) nonlinear in the measurement equation taking into account that the observations can be of
one-dimensional (range or bearing are measured) or two-dimensional (range and bearing). Their
results show that the performance of EKF is poor in comparison with KF when the problem
is one-dimensional. Notice that for the comparison only distances from sensors-to-anchors are

used and multilateration is not performed.

There are other simpler techniques in addition to KF or EKF for localization and tracking.
For example, [55] develops an MSE algorithm as an ML(Mazimum Likelihood) estimator for the
localization problem using the RSSI values (instead of the distances) measured by an unknown
node in a WSN. Their results show that the proposed MSE method outperforms the traditional
trilateration technique with a greatly improve on the accuracy of location estimation. Further-
more the paper shows that the accuracy for the outdoor environment is higher compared to
that in indoor because there is less variability in the RSSI. Their results show that a 52% of
the position estimates have an accuracy less than 1 m in a 40x40 m? sensor field whereas for
the rest percentage the accuracy in the position estimates is up to 2 m. Finally they show that
their simple method based on the RSSI can be used effectively to track the movement of an
unknown node in a WSN by repeatedly running the MSE algorithm over a predefined period of
time. This scheme is fully distributed as each sensor node is able to track its location using the

received RSSI values from the other nodes.

The method proposed by [55] does not allow to obtain other target moving characteristics
such as velocity ,acceleration, turn rates, etc. Moreover every anchor node must send every sam-
pling time a signal to the target meaning that they must be active and consuming some energy
for transmission. The people in [14] develop another tracking method based on IMM( Interacting
Multiple Model) with the combination of the particle filtering algorithm for collaborative target
tracking. When the object enters in a monitored region only the nodes sensing the target become
active, form a cluster and choose that sensor to act as cluster head which RSSI from the target
is the largest. The tracking algorithm is performed at the cluster head. When the target goes
on moving, a new cluster and cluster head is formed dynamically with self-adaptation. They
compare three hypotheses by means of the RMSE: the uniform motion, the uniform accelera-
tion motion and the uniform motion together with the uniform acceleration motion. The best
obtained accuracy in terms of RMSE is 0.58 m in the uniform motion case when the nodes are
deployed uniformly in the sensor field whereas the worst accuracy is 1.35 m in the acceleration
uniform case and a random deployment. The measures are carried on in a 100x100 m? sensor
field.



2.4. Literature Review 39

The conclusion obtained by [54] that EKF provides poor accuracy with one-dimensional
scenarios, when only distance can be measured is not true at all. In the other hand the complexity
of IMM is higher than the EKF due to IMM is a set of kalman filters. The accuracy obtained
by [14] have been improved by [10][56] using the EKF algorithm. The application in [10][56] is
the tracking of pallet jacks that are moving in a warehouse. In this paper the authors present
a technique to monitor the manual transportation processes of goods in a warehouse in order
to update the database automatically. Tracking of forklift trucks or pallet jacks equipped with
wireless sensor nodes is performed with nanLOC sensor nodes. To obtain range measurements
the used ranging metric is RToA. The initial state estimate is computed with trilateration as
the first observation and tracking is achieved with an EKF. Their experimental results show an
accuracy better than 0.40 m in both x and y coordinates in the 71% of the measurements in a
measuring field with the dimensions 9.48x3.25 m?. Some deviations about 1.38 m, 1.33 m are
obtained due to the blockage of the LOS.

The work shown by [57] is a simulation of the IMM for tracking maneuvering vehicles,
something which is quite related this master thesis. But instead of using EKF they prefer to
use UKF (Unscented Kalman Filter) for the turns because in accordance to their opinion EKF
has some drawbacks in nonlinear systems such as the approximation of a non-Gaussian density
by a Gaussian density. By simulations they show that UKF performance regarding the RMSE
of both the position and velocity is much less when using UKF than EKF. For the straight
trajectories a simple Kalman filter is used. However the complexity grade of UKF is greater
than EKF.

A design of the IMM for target tracking using both filters KF and EKF is given in chapter

2.4.3 Applications using Wireless Sensor Networks

By now several applications that use WSN can be found in the literature. One interesting
application is the monitoring concentration of carbon dioxide (CO2) gas in areas of interest
within a VSN Vehicular Sensor Network) such as the proposed by [58]. In this work they
employ Zigbee-based Jennic motes connected to the available vehicle GPS. The sensors send
the CO2 record via short GSM messages to the FC integrated with GoogleMaps as a user
interface. This scenario is centralized but not cooperative since the application does not need
a cooperative strategy as all the sensor nodes have to send its sensing data to the FC. In the

other hand cooperative strategy is useful in localization/detection-oriented applications.

Another centralized application that uses WSN is the implementation of an intelligent car
park management system [59]. Their work consists to implement a software application to de-

tect and monitor the occupation of the parking slots using low-cost sensor nodes. The status of
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the parking lot is reported periodically to a database via the WSN and its gateway. Through a
management system it can guide/inform in an easy way the users to find a free parking slot in a
urban street network. They have implemented a prototype using: commercial MPR2400 cross-
bow motes with MTS310 sensor, a data acquisition board (equipped with light, temperature,
acoustic and a sounder sensor) and a MIB510 as an interface board acting as a gateway. As a
database they use PosgreSQL and as a WSN monitoring application they use MOTE-VIEW.
The network protocol adopted by the mote in their system is XMesh.



Chapter 3
System Design

The purpose of this chapter mainly based on [12] is to show the set of models used by the
algorithms KF and EKF for a target tracking application in a wireless sensor network. All the
content that appears in this chapter has been developed in Matlab code and integrated in a
global GUI Matlab simulator. This chapter deals to show the used models for both KF and

EKF which can be summarized below:

e A nearly constant velocity model for the uniform motion, implemented as a WNA (white

noise acceleration) model with low-process noise variance.

e A maneuvering model implemented as a nearly "coordinated turn model” or known as

uniform acceleration motion.

The both words state and process which appear along this chapter refer to the

statespacemodel.

3.1 KF with the nearly constant velocity model

Consider the system with the following state vector:

with v, and v, the velocities along the z and y dimension, which evolves according to

41
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1 0 T2/2 0
0 0 T 0
x(k+1)= x(k) + uk) n=1,2, (3.2)
0 T 0 T%/)2
0 1 0 T

with a random initial condition x(0). The equation (3.2) represents a two-dimension uniform
motion with the state vector (3.1) sampled at time intervals 7' and a constant acceleration
noise u ~ N(0,02). This random noise u is a zero mean white sequence with variance o2 that
models the small acceleration produced by external unavoidable factors such as wind change,
small variations in the car accelerator pedal, etc. Values of o2 in practical scenarios can be for
instance 0.1m/s? or even 2m/s? [12]. This acceleration noise u affects both the (z,y) positions
and (vg, vy) velocities which is formulated with the matrix on the right side. The right term in
(3.2) that is adding to the left term is called as process noise. It can be understood as follows.

Notice that (3.2) has the form of a first-order Markov process:

x(k+1) =Fx(k) + G(k)u(k), (3.3)

where G(k)u(k) is the process noise with an appropriate covariance matrix Q which depends
on o2 being it a design parameter that must be known. The process noise covariance matrix Q

has the following form:

Q = G(k)o’IG(k), (3.4)

where 021 is the covariance matrix U of the acceleration noise vector u with the form shown

below:

(3.5)

Section 4 deals with the simulation of Kalman Filters for different values of o2.

Regarding the measurements they consist of the state’s position components corrupted by

additive noise:

1000

z(k+1) = x(k+1) + w(k + 1) (3.6)

0010

where the measurement noise is assumed zero-mean with variance o2, = 1. Also note that (3.6)

follows the same structure seen in section (2.3.1).
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The two noises vand w are mutually independent. Furthermore the filter is initialized ac-
cording to section 3.3 which explains how to initialize both the initial state vector and the initial

process covariance matrix.

3.2 EKF with the Nearly coordinated turn model

The turn of a target usually follows a pattern known as coordinated turn (CT) - characterized
by a constant turn rate and constant velocity magnitude. In practice the target velocity is not
constant at all due to some small deviations. Hence an external noise as the modeling error is
taken into account and thus resulting to the nearly coordinated turn model. The CT model is
necessarily a nonlinear system if the turn rate is not a known constant. Thus the vector denoted
in (3.1) is increased by one more component -the turn rate - resulting the following augmented

state vector:

x=[gz Vg Y Uy Q]/ (3.7)

the nearly coordinated turn model is then given by

[ sinQ(k)T 1—cosQ(k)T ] i i
1 "o 0 —Fm— 0 3770 0
0 cosQk)T 0 —sinQ(k)T 0 T 0 0
x(h+1)= |0 =gl 1 0T o I x(k)+| 0 472 0 [v(k) (38
0 sinQk)T 0 cosQk)T 0 0 T 0
0 0 0 0 1 0 T

Note that the process noise v in (3.2) has different dimension from the one in (3.8). Furthermore
the last row of the matrix that is multiplying to x(k) means that the turn rate is constant during
the maneuver. Regarding the measurement equation it is similar to the one in (3.6) but with

an extra column for the turn rate

1 0 0 0O
2(k+1) = x(k + 1)+ w(k + 1) (3.9)
0 01 0O

where w is the measurement noise.

Since the model in (3.8) is nonlinear with €2, the estimation of the state (3.7) will be done

with the EKF. In this case the system dynamic model has the form shown in (3.10).
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x(k+1) = f(x(k)) + G(k)u(k) (3.10)

In this case the EKF transition function is f(x(k)). It is not the transition matrix as in the case
of the KF but it is a nonlinear function evaluated over the state vector x. This nonlinear function
is expanded into a first-order Taylor series. The first derivative denoted by Fgkr(Jacobian of

f(x(k)) evaluated at the latest estimate of the state) is used in the on-line state covariance

computation.
A
0 cosQUk)T 0 —sinQ(k)T  faa(k)
Fekr (k) = [Vof(X)] lx=2ty= | 0 W 1 S”}?(%)T fas(k) (3.11)
sinQ(k)T 0 cosQUE)T  faa(k)
00 0 0 1

being fo1(k) the partial derivatives with respect to Q which are calculated as shown in (3.12)

i For (k) i [ (cos QR)T) T, (k) _ (sin Qk)T)ox (k) _ (sinQR)T)T0y (k) _ (=1+cosQ(k)T)oy (k) |
1 Q(k) Q(k)? (k) Q(k)?
faslk) | —(sin Q(K)T) T, (k) — (cos (k)T T, (k)
a (sinQ(k)T) T (k) (= cosQ( )T) 0y (k) (cos QK)T VToy(k) (sin Q(k)T) by, (k)
fas(k) k) Q(k)? T Q(k) Q(k)?
i faa(k) | I (cos Q(k)T) T, (k) — (sin Q(k)T )Ty (k) |
(3.12)
Summarizing the state prediction and state prediction covariance in the EKF are
Xn|n—-1=fFn-1|n-1
min—1 = fXfp—1|n=1) 513

Pn|n—1] =Fgkr(k)Pn—1|n—1Fgkr(k) + Tor(k)Q(k)Tor(k)

Regarding the turn rate angle Q, its initial value can be zero since a priori one does not know
if the target is turning and with which angular speed. Regarding the sign, the turn is to the
left if Q2 > 0 and to the right if () < 0. The EKF filter is able to estimate ) from the received
measurements. Note that in the case when Q = 0 the form of Fgkr given in (3.11) must be

replaced with the one shown in (3.14)
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1 T 0 0 —3T%(k)
01 0 0 —Toyk)
Fekr(k) lop_,= | 0 0 1 T $T%,(k) (3.14)
00 0 1 Tik)
(00 0 0 1 ]

3.3 Initialization of State Estimators

The initialization of the discussed tracking algorithms is a key point in the estimator behaviour.

The initialization of state estimators covers basically two aspects:

1. Initialization of state vector: basically it refers to the initialization of z,v,,y,and,v,.

Usually it is better to initialize the estimator with the first measurements. Therefore with
T being the sampling interval and taking into account 2 successive measurements then the

following two dimensional positions and velocities can be initialized:

Two dimensions

[0, yo] = [2[0], 2[1]]

vgo = AU (3.15)
vyo = =22

The equation (3.15) means that the initialization is based on the first two position mea-

surements z[0Jandz[—1] for the z-dimension and z[1]andz[—2] for the y-dimension.

Initialization of state covariance matrix: Assuming that the measurement noise w ~

N(0,r) with variance r then the covariance of the process is initialized as shown in (3.16).

Two dimensions

r % 0 0
r 2r
ro2rog
Pojoj=| " T (3.16)
0O 0 r %
00 x %_

On the one hand notice that the dimensions of the process covariance matrix is 4 x 4. This
covariance must be extended to 5 x 5 for the EKF with zeros at the last row and column
except that the element in the position (5,5) is nonzero, but it is the variance of the turn

rate £2. The initial value of the turn rate variance, 0?2, is a design parameter that depends
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on the scenario. Usually low values are chosen. For the simulations carried on in the next

chapter 0?2 is initialized to 0.01.

On the other hand the initialization procedure is called two-point differencing and it guar-

antees consistency of the initialization of the filter.

3.4 The Interacting Multiple Model Estimator

The Interacting Multiple Model (IMM), brought forward by H.A.P.Blom in 1984 and widely
used in target tracking was built as one of the techniques (GPB1(Generic pseudo-Bayesian
estimator of first order) and GPB2 are two other techniques in the literature[12] that have the
follow approach) that allow to combine several filters such as those discusses previously (KF and
EKF) at the same time in one single algorithm. The use the IMM depends on the application
scenario, for example, the tracking of a target that is moving. The trajectory of the target can
be composed by straight stretchs and turns. In stretchs where the target goes straight on the
best to do is to apply a linear model since the error of the model will be small. However in the
turns, one approach is to consider a higher noise the model due to the real trajectory deviates
from the linear model with small noise. Another approach is to use models that have been

designed exclusively for the turns such as the CT(Coordinated Turn) model. Figure 3.1 shows

the main idea of the IMM functionality.
KF
Figure 3.1: The IMM estimator as the combination with two filters [14].

Interaction

EKF

In order to consider several filters at the same time, the IMM is able to quantify from the
received measurements the likelihood for each of the models at each sampling time. Hence
a higher weight will be given to the model with higher likelihood, i.e. the model that best
approximates to the reality. The IMM takes into account the model probabilities at each time
instant - i.e. each model is weighted and has a likelihood to be true. Thus the estimation given
by the IMM is a weighted mixture (a combination) between the produced estimations by all the

interacting models.

The structure of the IMM algorithm is

(Ne; Ny) = (r357) (3.17)

where N, is the number of estimates at the start of the cycle of the algorithm, Ny is the number
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of filters in the algorithm and r corresponds with the number of models (or filters) taking into
account. Note that having r models is equivalent to having r filters as each filter is related with

one different model.

The full functionality of the IMM algorithm is shown in figure 3.2 and a description of each

stage is introduced following.

# (k- 1k —1),PY(k — 1]k — 1) #%(k — 1]k~ 1), P2(k — 1|k — 1)

Interaction/mixing ulk — 11k —1)

9k — 1|k - 1), POUKk — 1]k — 1) 3°2(k — Lk — 1), P%%(k — 1]k — 1)

Filter Filter
k) —f - Ak k) —| - Aok
z(k) M, (k) 2(k) M, 2(k)

&t (k|k), P (klk) &2 (klk), P (k|k)
Mode probability 1 1 .
Ai(k) - updateand |- u(klk) ?2(2\?’ iz(glz) 7 Stgte estlmate s 2 (k|k)
Aa(k) = mixing probability | x(k) &(klk), P"(k|k) — and covariance | | p s
calculation u(k) —  combination

Figure 3.2: Interacting Multiple Model operation [12].

First the inputs of the IMM at each time interval (k) are the state vectors and covariance
matrices computed by each model at the previous time (k — 1). Thus %! and P?! is the state
vector estimation and the process covariance matrix associated to the KF (the linear model).
Also %' and P! is the state vector estimation and the process covariance matrix associated
to the EKF (the CT model). Then three stages are carried on to produce an more accuracy

estimate:

1. Interaction/Mixing: this stage computes for each j = 1,...,r and for each time sample
(k — 1) the mixed estimates denoted by % (k — 1 | k — 1) and the mixed state covariance
matrix denoted by P% from the previous filter output. Both the mixed estimates and the
mixed covariance matrix are computed with the mizing probabilities which are denoted by
u(k —1 | k—1). These mixing probabilities are computed using the models transition
probabilities p;;, the model probabilities p(k — 1) and the normalizing constants ¢. On
the one hand p;; is a matrix containing the probabilities of switching from one model
to another model; they are governed by a Markov chain as the one shown in figure 3.3.
Figure 3.3 shows two states (or two models) and the transition probabilities between states

(models) p12 and po; as well as the probabilities to remain at the same state, p11 and pas.

On the other hand the vector u;(k — 1) is computed on-line using the likelihoods of each

model. In other words, the values obtained evaluating the received measurements vector to
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P11 D22

Model 1 P21 Model 2

Figure 3.3: The IMM estimator with two filters [15].

the probability density function of each model are used to compute the mode probabilities.

. Filtering: this stage deals with the execution in parallel of several filters that follows either

the same model with different process noise variance or different models. Every mixed
estimate X% and mixed state covariance P% computed in the previous stage is an input
parameter to one of the filters. The output of each filter are the state vector &/ (k | k), the
state covariance P/ (k | k) and the model probability A;(k)(the corresponding value of its

likelihood function for the received measurements vector z(k)).

. Mode Probability update and mixing probability calculation: The mode probabilities as

well as the mixing probabilities are updated on-line. The mode probabilities u(k — 1)
are calculated on-line evaluating the received measurements vector to the multi-variate
probability density functions of each model. The mode probabilities tell us the probability

that a model is more true than another. Therefore they can be seen as weighting factors.

. State estimate and covariance combination: the output of all filters are combined using

the updated mode probabilities. In other words, the output of the IMM is a weighted
combination between the outputs of all the models. This combination is only for output

purposes, it is not part of the algorithm recursions.

The set of equations that involve each of the IMM stages are shown in the following section
3.4.1.

3.4.1 The algorithm

One recursion of the algorithm consists of the following:

1. Calculation of the mixing probabilities: (i,5 = 1,....,r). The probability that a

certain mode was used at time instant £ — 1 given that current model M; at time instant
k.

1 o
pifj(k =11k —1) = gpijui(k—l) i,j=1,...,r (3.18)
J
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where the normalizing constants are
T
Ejzzpijﬂi(k_l) jg=1...r (3.19)
i=1
2. Mixing (j = 1,...,r). Starting with ®/(k — 1 | k — 1), one computes the mixed initial
state vector and state covariance for the filter matched to the current model M;(k) as
K9k —11k-1) =) &(k-1|k-Dpy(k—1k=1) j=1,...,r (3.20)
i=1
The mixed initial state covariance is computed as follows
PY = Yk =1]1k=1){P(k-1]k-1)
+Ek-11k=1)—%%Y(k—-1|k—-1
(o1 k= 1) =K%k =1 k=) o)
& -11k=1)—%Y(k-1|k-1)}
j=1,....r
3. Mode-matched filtering (j = 1,...,r). The estimates in (3.20) and (3.21) are used
as an input to the filter j. The likelihood functions corresponding to the r filters are
computed using both the mixed initial state vector and state covariance as
Ai(k) = ;eajp —l(z —27)(87) "Nz — 2’ (3.22)
! (2m)1/2|S7|1/2 2 ’ '
where z are the position measurements, z/ are the predicted measurements by each filter
and SJ are the innovance or residual covariances of each filter. The equation (3.22) says
that each filter has a pdf(probability density function) centred at its prediction 77 with a
residual covariance S7. The measurement z is evaluated for each pdf resulting a probability
of occurrence Aj(k) at the time sample k. As an example, if Aj(k) > Ay(k) means that
the predicted measurement Z by the model 1 (in our case would be the linear model) is
closer to the received measurement z. As a result a higher weight is given to the output
estimates from model 1.
4. Mode probability update (j = 1,...,7). This is calculated as follows:

1 _
pik) = —Aj(k)e; j=1,....r (3.23)

where ¢; is the expression from (3.19) and
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Cc = Zr: Aj(k)(_ij (324)
j=1

is the normalization constant for (3.23).

5. Estimate and covariance combination The outputs of each filter are combined (mixed)
in accordance to the mixture equations (3.20) and (3.21) with the mode probabilities

factors.

(k| k) = Zxﬂ k| k) (k (3.25)

P(k|[k) = Zug ) {PI(k | )+ [& (k| k) = %(k | IR (k | k) = %(k [ K)'}]  (3.26)

3.4.2 Examples with the IMM Estimator

This section shows two configurations of the IMM estimator with a simple target route that is

composed by straight lines, left and right turns.

Configuration 1: A scenario of dimensions 160 mx 90 m and a constant velocity of v = 30

Km/h. The Kalman initial state vector is shown in (3.27) whereas for the Extended Kalman,
it is the same but with Q = 0 at the end. The sampling time is 7" = 60 ms and the position
measurements have a standard deviation of 0, = 1.5 m. The true track of the target is from the
left to the right. The turn left radius is 10 m (the target turns trough the perimeter of a circle

of radius 10 m) and the turn right radius is 2 m.

Xo=|20 0 30 0] (3.27)

In this configuration the following filters are used by the IMM-CT estimator (IMM-
Cordinated Turn)

1. One Kalman Filter with a constant velocity model with v = 30 Km/h and a low level noise
with standard deviation of o2 = 0.1 m/s? that models the the uniform motion model.

2. An Extended Kalman Filter with a nearly coordinated turn model with the following

process acceleration noise covariance matrix:
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05 0 0
V=| 0 05 0 (3.28)
0 0 02

where the elements in the diagonal are the process noise standard deviations for the linear

(0.5 m/s?) and turn (0.2rad/s?) portions of the state, respectively.

Furthermore the initial mode transition probability matrix wor is

0.95 0.06
ToT = (3.29)
0.10 0.90

The initial estimates are based on section 3.3; that is, the initial position estimate is the first
measured position and the initial velocity /turn rate is zero. The initial model probabilities are

set to

1o = [0.50.5)' (3.30)

The results of the tracking as well as the true track can be seen in figure 3.4 shown below.

90 T

true track

noisy measurements
gol| — IMM-CT

KF
EKF

701
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Figure 3.4: Comparison of KF, EKF and IMM-CT with o, = 1.5 m. Configuration 1
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It can be seen that the estimations given by the IMM are between the KF and the EKF
estimations due to the IMM is a weighted combination between the KF and the EKF (the sum
of the weights or mode probabilities are 1). After the second turn, the IMM tends to the true
track much faster than the other two estimators. Table 3.1 provides a comparison between the
three estimators in terms of RMSE position error given the (RMSEy) position error, obtained

by multilateration.

RMSE, 1.8977 m

RMSERp | 4.6848 m

RMSEEKF 1.7979 m

RMSEpy g | 191 m

Table 3.1: RMSE errors of the different tracking estimators

One can see that the performance of the IMM estimator is much better than the KF and
worst than EKF and multilateration. It is due to that the simulations are performed in quasi
ideal conditions, i.e. small measurements variance is considered. Next the performance will be
evaluated when noise higher, o, >> 1.5m. It will be seen that for higher noise variance then
EKF begins to fail but in contrast the IMM tries to follow the true trajectory of the target.

The turns are generated using the CT model. The number of samples in the turns depends
on the sampling time, the radius of the right bend and the velocity. As the turn to the right
has smaller radius than the turn to the left then only two samples are obtained with the chosen
parameters. As a result with only two samples in the right turn the performance of all estimators

are poor around this region due to the turn is quite sudden.

Figure 3.5 represents the EKF mode probability which is proportional to the EKF likelihood

at each sample. One can see the following:

e initially the EKF mode probability is 0.5 and it starts to decrease upto sample k—1 = 100.

e The only regions with a quasi-constant EKF mode probability between 0.3 — 0.4 are the
first and the last. In those regions the KF in the linear model has greater likelihood. It
is because the linear model fits better to the true trajectory which is straight (linear).
Remind that the sum of EKF and KF mode probabilities are 1.

e The higher EKF mode probabilities is due to that the EKF in the CT model is more
accurate than the KF in the linear model, thus providing higher likelihoods. The cases
where the EKF gives position estimates with more accuracy than the KF are in the turns.

Thus the two peaks corresponds to the left and right turns.
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Figure 3.5: Maneuvering mode probability for the EKF. Configuration 1

Next the IMM is evaluated with a measurement noise higher, o, from 1.5m to 3m. The
results in 3.6(a) show that the EKF performance is bad after the second turn. In contrast the
IMM tracks more accurately the target. For instance, after the position (120m,80m) the IMM
is tracking the trajectory within a position error less than 4 m approximately whereas the KF
seems to track with a similar position error than the IMM after the position (140 m, 80m). Table
3.2 shows the RMSE of all tracking algorithms. Notice that the error of IMM is the smallest

one.

400

(a) Tracking with EKF, KF and IMM:o, = (b) Maneuvering mode probability for
3m EKF

Figure 3.6: Configuration 1. Comparison of KF,EKF and IMM with higher measurements
standard deviation in 3.6(a)(b) Maneuvering mode probability for EKF in 3.6(b)
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RMSE, 3.7986 m

RMSEkp | 6.9962 m

RMSEEKF 7.1958 m

RMSEpy | 36734 m

Table 3.2: RMSE errors of the different tracking estimators

Following, another configuration taken from [12] is used to evaluate the tracking algorithms.

Configuration 2: The scenario area is of dimensions 30000 mx 15000 m and a constant

velocity v = 120 m/s has been considered (note that this is for a typical ATC tracking applica-
tion). The interval between samples is "= 5s. In the scenario under consideration, the initial
point at time t = 0 s where the state vector is initialized is at the position [25000 2, 10000 m).
The flight goes westward during the first 125 s. Then it performs a 1°/s coordinated turn to the
left during 90 s. After the left turn the flight goes southward during 125s. Then another 3°/s
coordinated turn to the right is executed during 30 s and finally the flights flies westward again
with constant velocity. The position measurements have a standard deviation of ¢, = 100 m.
The first turn corresponds to a radius of 6875.5m whereas the second turn corresponds to a
radius of 3600. This IMM configuration is referred to us as IMM-L since 2 linear state estimators

have been used (2 Kalman filters):

1. One Kalman Filter called KF-1 with a low level noise with a standard deviation of o2 =

0.1 m/s? m modelling the uniform motion model.

2. Another Kalman Filter called KF-2 with a higher level process noise (higher acceleration)
with a standard deviation of 02 = 2m/s? modelling the turns. Taking into account an
certain error to the model will be useful to follow the turns since the motion model is

rectilinear.

The tracking of the flight trajectory with one IMM-L and 2 independent KF is shown in
figure 3.7(a). Again the maneuvering mode probability for model 2 associated to KF-2 can be
seen in 3.7(b).

A comparison of the performance between all tracking algorithms in terms of average position
error is given in table 3.3. One can see that the performance of IMM is the best in comparison
to the two independent Kalman filters. However multilateration performs better than IMM.
Furthermore KF-2 provides more accurate estimations than KF-1 since a higher process noise

is given to the model 2 to track the turns.
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Figure 3.7: Configuration 2. (3.7(a)): Comparison of IMM-L with two single KF’s: one o2

Maneuvering mode probability for model 2 with sigma, = 2 mis?

(b) Maneuvering mode probability for
EKF

w =

0.1m/s? and another with o2 = 2m/s?, (3.7(b)): Maneuvering mode probability for the model

2

RMSE,

10.1864 m

RMSEFq

667.6266 m

RMSER 9

93.0959 m

RMSEpy

84.3506 m

Table 3.3: RMSE errors of the different tracking estimators used in the Configuration 2

The next chapter deals with the theoretical validation of the set of algorithms that are

explained in this chapter. For that a a simulator called ” Car Positioning Simulator” is developed

in Matlab.






Chapter 4

Matlab Tracking Simulator

In this chapter we present the simulator we have developed to validate the tracking algorithms.
First it is shown how multilateration is able to estimate the position of the target with a cer-
tain error around 2 or 3 m. Once the positioning technique is implemented, several tracking
algorithms are also developed in the simulator. This simulator, called ” Car Positioning Sim-
ulator” allows to provide a theoretical validation of the tracking techniques in a real scenario:
9 building blocks (3 vertical streets and 2 horizontal streets), several random target routes pre-
viously created and the application of KF, EKF and IMM over each of the routes. Furthermore
the simulator is designed with a GUI( Graphical User Interface) as a centralized application that
allows to perform several simulations for different input control parameters. It will be seen later
that these control parameters are: the s.t.d(standard deviation) of the measurements, the s.t.d
of the turn rate, the transition probability matrix, the initial model probabilities, the path loss

exponent, the target sampling and the variance of the shadowing.

This chapter deals with the following sections:

e Introducing the created Matlab GUI-based street simulator as centralized application and

give an explanation of this simulator.

e Showing several results for different routes and scenarios of the set of tracking estima-
tors analysed in the previous chapter. For example the performance of all the tracking
algorithms is analysed for different scenarios such as low-high shadowing noise, low-high
measurement errors The performance of the tracking estimators depends on their param-

eters (R, P, i, 0,) which can be adjusted in the GUI application for each scenario.

57
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4.1 Introduction to the Matlab GUI Simulator

Matlab© provides a useful utility to create graphical user interfaces. Graphical interfaces pro-
vides facility and comfort to interact with the global application allowing the possibility to
carry on several simulations for different values of the input control parameters. The Matlab

GUI design application used to built the simulator is shown in Figure 4.1.
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Figure 4.1: ”Matlab GUI Design Application” based on Matlab©

The Matlab GUI utility is easy to use; it provides several graphic objects such as Textfields,
Buttons, radiobuttons and checkboxes. The final design of the application should be practical
and understood by the user. On the right side of the figure, one can see the input control
parameters of the application, whereas the output will be represented in the graphical axes and

the RMSE errors will be shown in the bottom of the figure.

The scenario is a set of streets with dimensions 20 x 48 m?. The distance between the anchor
nodes or the sensor nodes located in each of the parkings slots is set to 4m. The anchor nodes
are represented by the symbol x in the simulations. The number of anchor nodes are 12 per

street side. The built application of the simulator is shown in figure 4.2.
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A description of the input parameters of the simulator is the following:

— RMS Errors (in m)

distance in m

RS Muttilateration
RMS KF
RMS EKF

RMS b

Probahilties

[7] Muttilater ation

() Generate video

[ Wisighted Average Power

Figure 4.2: ”Car Positioning Simulator” based on Matlab©

General Parameters:

affecting the RSSI.

ML standard deviation(m): this parameter corresponds to o.

default it is set to 5 s since initially it was a requirement.

Sigma_shad(dB): this parameter corresponds to the variance of the shadow fading, Ugh ad>

Sensor Activation(sg): it corresponds to the sensor activation time T, in seconds. By

Target sampling(sg): it is the time 7" used to represent the vehicle positions.

Sensor Groups: at the beginning of the project it was supposed that the activation time

of all parking sensors was 5 s. Due to the activation time was considered too high to obtain

enough position measurements for the tracking a new strategy was found. This strategy

consisted to have two groups of active sensors with a shift in the activation times. Thus
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more position measurements could be obtained for the same activation time. For example
an activation time of 5 s with one group of active sensors corresponds to one measurement
per street at the travel speed (all sensors active at the same time) whereas with two groups
of active sensors it doubles the number of measures (two position measurements per street).

This is shown in the simulations section.

e Real Path Loss Exponent: this parameter is the yrggs taken into account for the
pathloss model to calculate the received power at a distance d; from the transmitter, i.e.
RSST = P, — 10,ssilog1od; being P, the transmitted power in dBm.

e Estimated Path Loss Exponent: in practice 7,ss is not known but an estimate 4,.g;
is found. This parameter is taken into account because in practice the path loss exponent

estimated by the user, 4,ss; from the RSSI can be different from the real one, 7, sg.

e PO(dBm): it is the received power measure at 1m from the transmitter. By default
a measurement of the RSSI at a distance of 1m from the transmitter at the frequency
2.4GHz is —63.2dBm. Although this value seems to be very small at this distance it has
sense because the sensor motes are not powerful and cannot transmit high power levels.

It is worth recalling that the sensor motes are energy constrained.

e Select route: routes are previously computed allowing then to be loaded on the simulator.

KF and EKF Parameters:

. KFsigma (m/s?): this parameter corresponds to o2 of the KF.

. EKFsigmal (m/s?): this parameter corresponds to o2 of the EKF in the both dimensions
x and y corresponding to the elements (1,1) and (2, 2) of the acceleration noise covariance

matrix U.

* EKFgioma2 (°/s%): it is the variance of the turn rate €2, that is, the element (3, 3) of U.

IMM-CT Parameters:

e Models transition matrix: this matrix corresponds to wor.

Initial Modal Probabilities: initial ug.

Multilateration: if this option is set then multilateration is used to estimate the target

position.

Weighted Average Power: this technique is used in the practical scenario shown in

chapter 5. It is another strategy to estimate the position of the target from the known
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positions of the anchors and a set of weighting coefficients based on the received power from
the selected anchor nodes. The mathematical model of this technique is shown in section
5.2. As shown in the following chapter this strategy offers better results in a real scenario
where the estimate positions can be corrupted by high shadowing noise. In particular the

position is obtained as follows:

(Z,9) =A «

__ RSSI, L
a=srRss, b

(4.1)
-N
being Aoy n a matrix containing the (x,y) coordinates of N selected anchors with highest
RSSI. The « is a vector of dimensions N x 1 containing the weighting coefficients; every
anchor node has associated a certain weight which is dependent on the ratio between the
RSSI from a specific anchor and the sum of all the RSSIs from all the anchors (it is a

normalization of the received power).

e Generate video: this option gives to the user the possibility to generate and store locally

a Quicktime movie of the performed simulation.
e Run: this button starts the simulator

¢ View mode probabilities: this button allows the user to see the mode probabilities

computed by the IMM estimator.

A useful output parameter is the RMS between the actual target position and the estimated
one. It allows to compare numerically the performance of all the estimators in terms of average

position error.

Next we show a block diagram of the simulator.

4.1.1 Simulator block diagram

The block diagram of the simulator is shown in figure 4.3. It can be seen the set of matlab

scripts and the wirings between them.

The set of scripts are described as follows:

e TrackingApp.m: This is the Matlab GUI tracking application.

o TrackinglMMKFandEKF.m: This code implements the simulator, that is, when user click
over the button run that appears in the application. This function calls all the tracking

estimators. The inputs of this script are all the input parameters of the application.
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Figure 4.3: Block diagram of the ” Car Positioning Simulator”.

e AnchorsDefinition.m: this script builds creates a matrix containing the 2-D coordinates of

all the anchors of the scenario taking into account the following input parameters:

Anchors_Street: The total number of Anchors per street. The number of anchors per

street is set to 24, corresponding to 24 parking slots (12 per street side).

block_vert, block_horiz: the number of building blocks in the vertical and horizontal

domain. In the scenario block_vert=3, and block_horiz=4.

lengthStreet: the length of the street is set to 48 m.

distAnch: the distance between anchors is 4 m corresponding to one parking slot.
— WidthStreet: the width of the streets is set to 20 m.
— start_x: this is the distance from either y = 0 or £ = 0 where the parking slots starts.
e Multilateration.m: This code performs multilateration with N=4 anchor nodes with maxi-
mum RSSI. If the option weighted average is selected in the application, instead of applying

multilateration the weighted average method is used. The inputs/outputs of this script

are the following;:

— Xp: it is a vector containing the true positions of the target. This vector is used to



4.1. Introduction to the Matlab GUI Simulator 63

compute the real distances to the specified anchors in order to obtain the RSSIs using

the path loss model.

— AnchPos: it is a matrix containing the 2-D coordinates of those anchors that belong
to the street where the target is located. The second input AnchPos are all the

anchors and it is used to set which of them are active or not depending on Ny, oups-
— PO: the RSSI at 1m.
— Yrssr: the real path loss exponent.
— Arssr: the estimated path loss exponent.
— o2, .t the variance of the shadowing.
— N: the number of used anchors to carry on multilateration.
— Anchors_Street: it is described above.

— incrossing: it controls if the target is inside or outside the crossings. If the target is
inside , multilateration is performed with the active anchors located at the border of

the crossing.

— Ngroup: it controls which group of anchors is active at each time instant. This

variable will be always 1 if there is only one group of anchors.

— Ngroups: the number of existing groups of anchors. It is selected in the application

with the parameter Sensor Groups.
— distAnch: the distance between Anchors.

— Multilat: if the option multilateration is selected in the application then this variable

is set to 1.
— Xy: it is an output vector that gives the position estimates of the target.

— ActiveAnch: it is an output matrix that contains the coordinates of the active
anchors. It is used to show the user in the axes of the application which anchors are

active.

o weightedAverage.m: This code generates the coefficients used in the weighted average

method to calculate the target position.

e posfun.m: It corresponds to the cost function C(x,y) appeared in 2.9. This cost function
is the euclidean distance from the target to each of the anchors. The function fminunc

from matlab optimization toolbox finds the values (x,y) that minimize C(z,y).

e Kalman.m: It implements the Kalman Filter. On the one hand, the inputs from
TrackinglMMKFandEKF.m are: the state vector Xk and the state covariance matrix
Pkr at the previous time instant, the transition matrix F, the observation matrix H, the

acceleration noise covariance matrix of the process Ukr, the measurement noise covariance
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matrix R, the position measurements z, and the sensor activation time 7,. The outputs
are: the updated state vector X,paxr and state covariance matrix Pupd, the predicted
state vector Xpreq and state covariance matrix f’pred, and the likelihood probability Axg.
The last is used in the IMM. On the other hand, the inputs from IMM are the same than
the other set of inputs except: the mixed state vector Xoj, the mixed state covariance ma-
trix f’oj and the transition matrix F correspond to the first elements of a 1 x 2 cell array.
A cell array can be used to store matrices of any dimension in each slot. The outputs can

be interpreted in the same way than in the other set of outputs.

genKalmancoefskf.m: This script computes the Kalman coefficients from the state covari-
ance matrix Pgj, measurement noise covariance matrix,the transition matrix, the obser-

vation matrix, acceleration noise covariance and the sensor activation time.

ExtendedKalman.m: It implements the Extended Kalman Filter. The set of inputs and
outputs can be interpreted in the same way as in the Kalman Filter. Regarding the inputs
from IMM, the mixed state state vector, the mixed covariance matrix and the transition

matrix correspond to the second elements of the cell array.

genKalmancoefsekf.m: This script computes the Extended Kalman coefficients in the same
way as in Kalman Filter except that the transition matrix is not passed as an input
parameter. In fact the Jacobian of the nonlinear function of the dynamic state is updated
online at each time step since it depends on the actual target turn rate ) of the state

vector.

chooseTransitionMatrix.m: This function chooses the transition matrix depending on 2.
If Q < threshold the used transition matrix corresponds to the uniform motion model
whereas if 2 > threshold the used transition matrix corresponds to the coordinated turn
model. This threshold is set to 10712.

immct.m: This code implements the IMM-CT tracking estimator. It requires the functions
Kalman.m, ExtendedKalman.m and chooseTransitionMatrix.m. The inputs of this script
are described next:

— pij: this vector corresponds to the prior model probabilities.

— f’ij: it corresponds to the models transition matrix wc.

— Xjk, f’jk: These parameters are a 1 x 2 cell array containing the outputs of both KF

~

and EKF, Xj, Pjk, at the previous time step. It is feedback.
— F,H, U, R: these parameters are described above.
— Xy: the position estimates obtained with the script Multilateration.m.

— Tsnife: it is the sensor activation time.
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The outputs are:

A~

— X¢,Pe: a1 x 2 cell array containing the updated combined state vector and state

covariance from both filters.

~

— Xjk1, Pjk1: a 1 X 2 cell array containing the updated state and covariance computed
by each of the filters.

— pjk1: the updated model probabilities at each time step.

Next we show the set of target routes used in the simulations.

4.1.2 Target Routes

The target routes allows to load one of the seven target roads stored locally. For instance, three
target routes are shown in figures 4.4(a) 4.4(b) and 4.4(c). All routes have both left and turn
rights. The following section use these true target routes to apply positioning techniques and

the tracking estimators.

4.2 Tracking and Positioning Simulation

This section is devoted to test the estimators described in the previous chapter for different
scenarios. The main idea is to show how the performance of the positioning and tracking
techniques vary by modifying the input parameters of the simulator. First, the three target

routes are tracked by using the following default values for the input parameters:

General Parameters:

e Sigma shad(dB): 2dB

e ML standard deviation(dB): 3m
e Sensor Activation (s): 5s

e Target sampling (s): 0.5s

e Sensor Groups: 1

e Power Path Loss Exponent: 2

e Distance Path Loss Exponent: 2

e PO(dBm): -63.2
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Figure 4.4: Target routes definition.

KF, EKF and IMM Parameters:

KF

EKF

EKF

sigma
sigmal

sigma?2

(m/s?): 0.1
(m/s%): 0.5

(°/s%): 0.2

Models transition matrix:

TCT =

0.95 0.05
0.10 0.90

(4.2)



4.2. Tracking and Positioning Simulation 67

e Initial Modal Probabilities:
to = [0.5 0.5] (4.3)

Multilateration: on

Case 1. Modifying Ngroups The results for the defined default input parameters are

shown respectively in figures 4.5(a), 4.5(b) and 4.5(c) for the three target routes. The corre-
sponding RMSE errors of all the estimators for the different routes are shown in table 4.1. On
the one hand it can be seen that the number of total measurements is not enough to have efficient
tracking since the estimators converge with a high number of measurements. It is due to the
high sensor activation time for a target speed of 30 K'm/h = 8.33m/s meaning approximately
one position measure per street every 5 s (the length of one street is 48 m). The sensor activation
time comes from a requirement of the company. In order to have more position measurements,
two groups of sensors were considered with a delay Tsp;f; in the activation time. For example
two groups of active sensors imply that Typipe = To/Ngroups. For the case of Ngroups = 2
then Typ;rs = 2.5 s meaning that the computation of multilateration is done every 2.5s. As a
result the double of the position measurements with one group is obtained as shown in figures
4.6(a), 4.6(b) and 4.6(c) with the corresponding RMSE errors shown in table 4.2.

On the other hand it can be seen that the performance of IMM is the best one in comparison
to KF and EKF, since it provides the smallest RMSE for any route giving an average difference
less than 70 ¢m with respect to the multilateration. Moreover the EKF performance is better
than the KF performance in most of the situations when both values RMSEpKE and RMSEkp
are compared. It is because EKF behaves as a KF when the turn rate is zero as demonstrated
by (3.14).

The number of output estimates from all the tracking estimators is the same than the number
of multilateration position estimates. In order to show the estimated trajectory of the target, all
the points are connected with lines (it would be better to have a lot of continuous measurements

but in practice it is impossible due to sensors energy constraints).

Route 1 | Route 2 | Route 3

RMSE. () 2.3228 | 2.0484 | 1.9477

RMSEykp(m) 2.5209 | 3.7951 2.9892

RMSEpgp(m) | 2.557 | 2.8116 | 2.3482

RMSEp\yi(m) | 2.2746 | 2.7016 | 2.2618

Table 4.1: RMSE errors associated to the results in figures 4.5(a), 4.5(b) and 4.5(c).
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Figure 4.5: Simulation of tracking algorithms for different target routes and the default param-

eters.

Route 1 | Route 2 | Route 3

RMSE_ (m) 1.6941 2.0311 1.8244

RMSEgp(m) | 3.279 | 4.5699 | 4.7661

RMSEggp(m) | 2.9703 | 4.3902 | 2.9681

RMSEp\ () | 1.8449 | 24737 | 2.1897

Table 4.2: RMSE errors associated to the results in figures 4.6(a), 4.6(b) and 4.6(c).
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Figure 4.6: Tracking simulation with Ngroups= 2 and T, = 5s.

Therefore from now on the simulations will be done with 2 groups of sensors, lay adopting
an activation time of Ty,0tes = 55 and an activation shift time of T;p; = 2.5s. The target

sampling will be set to Tiurget = 0.5 s.

Case 2. Impact of a?had variation: How the parameter U?had have an influence on the

position estimates?. This parameter is related to the received power and it accounts for the
shadowing in wireless channels. The shadowing effect is modelled as a lognormal with mean 0
and variance O‘?had. For example if aghad = 0 means that the received power is only dependent
on the distance and as a result the computed position measurements with multilateration are
exactly the true target position as shown in figure 4.7. However the tracking estimators still
gives bad estimations, due to the dependency on the std of the position measurements. It will

be seen in figures 4.9(a), 4.9(b) and 4.9(c) that when considering o, = 0 then all tracking
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estimators estimate the same true track and therefore the RMSE errors shown in table 4.5 will
be zero. It is worth recalling that the target position estimates are found with those four anchor
nodes with higher received power. The results where aghad = 0 are shown in figure 4.7 with the
corresponding RMSE errors in table 4.3. One can see in table 4.3 that RMSE,(m) is almost

negligible (not zero because it comes from estimates) for all routes since the shadowing noise is

set to a zero value.
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Figure 4.7: Tracking simulation with Ughad =0dB.

sha
measurements. The results are shown in figure 4.8 with the RMSE errors shown in table 4.5.

On the one hand one can see that the RMSE errors are greater than in previous simulations.

On the other hand the performance of KF is better than IMM and EKF for the case of route

Increasing the value of thad =0 to o2 4 = 30 dB, for instance, will affect the position

1 and route 3 whereas the IMM performance is the best in route 2. Depending on the scenario
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Route 1 Route 2 Route 3
RMSE.(m) 7.477e-05 | 0.00014688 | 0.00011769
RMSEk(m) 2.67 5.2307 4.1509
RMSEgkg(m) | 2.8468 2.4598 2.0838
RMSEp(m) | 0.78805 1.4721 1.1043

Table 4.3: RMSE errors associated to the results in figures 4.7(a), 4.7(b) and 4.7(c).

under consideration the KF can be more accurate than IMM as happen in route 1 and route 3.

However this kind of scenarios cannot occur because if high shadowing noise is considered also

the variance of the position estimates must be higher.
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Figure 4.8: Tracking simulation with o4,,¢ = 30dB.
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Route 1 | Route 2 | Route 3
RMSE.(m) 8.8954 | 9.0811 9.1854
RMSEk(m) 7.3217 | 9.7178 | 6.9007
RMSEggg(m) | 9.7907 10.46 10.3231
RMSEpypi(m) | 8.5713 | 8.7038 | 8.9004

Table 4.4: RMSE errors associated to the results in figures 4.8(a), 4.8(b) and 4.8(c).

The values azh uq @nd o are somehow related. In other words o, must be fitted to Ughad as
0, is a design parameter. For instance, if O'z = 0 it is clear that ogpeq must be zero (because the
position estimates do not have any variance) and therefore the position measurements obtained
by multilateration and the position estimations obtained by the tracking methods are the same
as shown in 4.9 with the RMSE errors in table 4.5.

Route 1 | Route 2 | Route 3
RMSE,(m) 0 0 0
RMSEykp(m) 0 0 0
RMSEgpkg(m) | 0 0 0
RMSEpv(m) | 0 0 0

Table 4.5: RMSE errors associated to the results in figures 4.9(a), 4.9(b) and 4.9(c).

Increasing o2 deals with an increase of 02, ;. The value of o, to be considered must reflect
to the reality with aihad. In other words, in practice we have that the RSSI is dependent on
O'ghad. But if we do not know azhad because perhaps we do not have enough measurements to
obtain the wireless channel statistics, then we should adjust the value of o, to fit the estimation
positions with the true positions. It is worth recalling that multilateration is dependent on

|sigmaspqq and the tracking is dependent on both z and ag in the simulations.

Case 3. 0, dependency: Here we show how the values of o, have an influence on the
position estimations obtained by KF, EKF and IMM. Figure 4.10 shows the tracking for o, =
30m and Ughad = 2dB with the associated RMSE values in table 4.6 and figure 4.11 are the
results for the tracking with o, = 30m and 02, ,, = 30 dB with the corresponding RMSE values
shown in table 4.7.

Considering for instance the values o, = 30 m and Ughad = 2dB has no sense. It is because
a small deviation on the RSSI due to the shadowing effect (the RSSI variation range is RSST +
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Figure 4.9: Tracking simulation with aghad =0dB and o, = 0m.

Table 4.6: RMSE errors associated to the results in figures 4.10(a), 4.10(b) and 4.10(c).

Route 1

Route 2

Route 3

RMSE. (m)

2.2024

2.1854

1.8432

24.2831

8.1546

25.4734

RMSEpgR (m)

4.7209

10.5379

11.4415

RMSEpyy(m)

8.0575

6.4664

9.3138

30shad) corresponds to a small variation on the distance between the receiver and the transmitter.

For instance, consider the following RSSI mean value P,y = —72.7424 dBm from the path loss
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Figure 4.10: Tracking simulation with Ughad =2dB and o, = 30m.

model with PO = —63.2dBm, vrssi = 2 and d = 3m. The maximum RSSI value assuming
U?hud =2dB is P9 = P.1 — 305pad = —76.9851 d Bm which corresponds to a maximum distance
deviation of do = 4.8894m. Hence a value of 0, = dos — d =~ 2m could be more appropriated
instead of o, = 30 m. Although it has no sense to choose the values o, = 30 m and O'ghad =2dB

the set of simulations in figure 4.10 are shown in order to demonstrate that the behaviour of the

algorithms depend on:

1. Position measurements z obtained by a position technique like Multilateration. If the
position measurements have large errors it also leads large errors in the outputs of the

tracking techniques.

2. Measurement noise covariance R related to o.
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Figure 4.11: Tracking simulation with O'ghad =30dB and o, = 30m.

Route 1

Route 2 | Route 3

RMSE. (m)

10.4049

7.2654 | 7.4966

24.5122

10.5017 | 23.6941

RMSEgKF (1)

11.55577

11.8478 | 14.4254

RMSEIMM (m)

9.9302

9.0447 | 9.3391

Table 4.7: RMSE errors associated to the results in figures 4.11(a), 4.11(b) and 4.11(c).

The results shown in figure 4.11 show that for larger error in the position measurements

larger errors appear in the position estimates obtained by the tracking algorithms. Re-call that
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aghad and o, are related. Figure 4.11 with its corresponding RMSE errors in table 4.7 also
shows that the behaviour of IMM-CT in terms of RMSE is the best in comparison with both
KF and EKF. In cases when the shadowing noise can be high -i.e. the deviation of the position
estimates is also high- it is necessary to adjust the process noise covariance matrix Q to achieve
a good performance of the tracking estimators. Next we demonstrate the dependency of the

tracking estimators under U (Q is directly proportional to U).

Case 4. Uigr and Uggkr adaptation: On the one hand, when having larger position er-

rors it is necessary to find those values for the acceleration noise covariance U that allow the
tracking algorithms to adapt to the measurements and thus minimizing the RMSE. On the
other hand R is not a design parameter since it is related to the measurement noise. It is worth

recalling that the values of its diagonal are o, in m.

Therefore values to be chosen will be those that the algorithm performance in the noisy
environment satisfies the designer. For example, with the following values for Ukxy and Ugkr

instead of the default ones:

6 0 O
4 0
Ukr = Ugkr= |0 6 0 (4.4)
0 4
0O 0 3

the achieved RMSE errors shown in table 4.8 which corresponds to the simulations shown
in figure 4.12 are much less than the ones seen in table 4.7 for the previous simulations in
figure 4.11. As a result we can see that the chosen values in (4.4) are more suitable than the
default ones when the noise is high. It is important to keep in mind that the performance of
the tracking algorithms depends on U or o,. For example, if KF is used to follow a uniform
motion model, increasing U g makes that the belief of the model decreases (believing more with
the measurements) and viceversa decreasing U g means that the belief of the model increases.
Figure 4.13 are the simulation results with the same values than the used in the simulations
seen in figure fig:figure410 but with Uggr = 0 (all values in its diagonal are zero). One can
see in figures 4.13(a) and 4.13(c) that the EKF tendency is to follow a nearly coordinated turn
model, i.e. EKF deviates from the target trajectory. In figure 4.13(a) the KF provides better
position estimations than EKF, achieving smaller RMSE errors as shown in the first columns
of table 4.9. However as shown in table 4.9 corresponding to figure 4.13(c) the EKF achieves
smaller RMSE errors than KF although the EKF track seems to be worst than the KF track.
Hence a conclusion is that the performance of the tracking estimators is also dependent on the
scenario under consideration; in this case the routes are different. For example, in figure 4.13(b)
the EKF track is more ore less similar to the KF track, i.e. the EKF track does not deviates.
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Concerning the IMM-CT performance it gets worst in comparison with respect to the results
in the previous simulations in figure 4.11. This can be seen when comparing the achieved RMSE
errors. The reason of that is because IMM-CT depends on the performance of of the combined
filters. Thus if one of the filters gets worse then the IMM performance deteriorates. Increasing
02 = 0.8m/s?, then the EKF performance improves implying also the IMM-CT performance as
shown in figure 4.14 or numerically with the RMSE errors shown in table 4.10. One can see

that the average positions errors of both KF and IMM-CT decreases significantly.

It is important to keep in mind that the way of finding suitable values of Uxr pxr is by
means of trial and error, there is no numerical way to find the optimum values of Uk i r that
achieve the minimum average position error. If one needs to apply the tracking algorithms in a
real scenario the variance of the acceleration should be obtained by measurements or by means
of trial and error through several campaign measurements. For example, a KF filter was used
to track a car in a real scenario as detailed in chapter 5 and several campaign measurements

were carried on to find the appropriate value of the acceleration noise variance.

Route 1 | Route 2 | Route 3
RMSE.(m) 9.0489 | 6.4985 | 7.578
RMSEk g (m) 7.6325 | 8.69 6.3738
RMSEgpgg(m) | 11.3928 | 9.8031 | 7.8065
RMSEp\p(m) | 7.2899 | 8.1902 | 6.2253

Table 4.8: RMSE errors associated to the results in figures 4.12(a), 4.12(b) and 4.12(c).

Route 1 | Route 2 | Route 3
RMSE,(m) 7.8532 7.1251 7.2047
RMSEykp(m) 24.1103 | 10.2743 | 24.3379
RMSEgkg(m) | 31.2504 | 10.2306 | 17.501
RMSEp\p(m) | 24.959 10.0513 | 20.0396

Table 4.9: RMSE errors associated to the results in figures 4.13(a), 4.13(b) and 4.13(c).

Case 5. Adaptation of IMM-CT Parameters: The purpose of this simulation case is

to deal with the IMM-CT performance, taking into account the following parameters:

1. the transition probability matrix mcr: the Markov chain (or state machine) transition

probabilities between different states (models) and the probabilities to remain at the same
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Figure 4.12: Tracking simulation with thad = 30dB, 0, = 30m and the process covariance

matrices (4.4)

Route 1 | Route 2 | Route 3

RMSE. (m) 8.0485 | 9.6884 | 7.4144

RMSEykp(m) 25.2994 | 11.6391 | 26.1548

RMSEgkp(m) | 11.4893 | 9.8404 | 9.5091

RMSEpyp(m) | 13.6132 | 10.6801 | 13.4004

Table 4.10: RMSE errors associated to the results in figures 4.14(a), 4.14(b) and 4.14(c).
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Figure 4.13: Tracking simulation with 02, , = 30dB, o, = 30m, Qg =[0.1 0;0 0.1] and

Qekr =0

state.

2. the model probabilities p: the certainty probability of a model.

With respect to 1 we want to demonstrate that the performance of IMM is not dependent on
mor as commented by [12]. For that suppose we choose the following transition matrix as the
transpose of the used right now. We choose these values to represent the opposite case of the
previous cases, i.e. the probability to go to model 2 from model 1 was 0.05 and now will be
0.10 whereas the probability to go to model 1 from model 2 was 0.10 and now will be 0.05. It
does not matter what other values we choose since we will demonstrate that IMM efficiency is

independent with the Markov chain probability matrix.
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Figure 4.14: Tracking simulation with 0%, , = 30dB, 0, = 30m, Qg =[0.1 0;0 0.1] and
Qexr =[0.8 0 0;0 0.8 0;0 0 0]

0.95 0.10
TCT = ToT = (4.5)
0.05 0.90

Introducing the values of (4.5) into the simulator and keeping the other input parameters to
their default values gives the results shown in figure 4.15 with the corresponding RMSE errors
in table 4.11. One can see that the results are similar as in figure 4.6 in the order of few cm
(not equal because the output of the filters are estimates). One can see that the RMSE errors

of the IMM are also similar comparing table 4.11 and table 4.2.
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The idea to keep the rest of the input parameters to the default values is to avoid the errors
induced by high noise in the positions measurements that could make difficult the analysis of

IMM estimator when varying its parameters.

- ==
LRuDeL a0 =0

XALOC PROJECT
CAR POSITIONING SIMULATOR
2310 SFCOMNAY - Unversta Auonos g Barceks

B Trockingion
frchive Insruction:

Dods|k

-

RL09E£- 20 =D
XALOC PROJE!

CT

—_——aEs

S
ML St Devition (1)

i Loss
Exponet 2

PoceEm) ET)
Pocaem) =2

Setrote o 5
Sectrote et

RissE =

o |

(a) Route 1 (b) Route 2
B Teoccngiee i ™ B B e )
EETCCE L TP EE 08 =o |

XALOC PROJECT

(¢) Route 5

Figure 4.15: Tracking simulation with the default parameters, Ngroups= 2 and the chosen mode

transition matrix in (4.5)

Regarding the model probabilities they represent the initial certainty probabilities p; and ps
of the model 1 and the model 2 respectively (note that p; + ps = 1). Next we vary the model
probabilities assuming initially that the target moves according to a uniform motion model with
a probability of 70% whereas in the rest 30% the target will perform some turns, i.e. the target
follows a nearly coordinated turn model. The IMM needs to have an initialization of the model
probabilities and in practice the route of a target is unknown. We will show that the performance
of IMM with pucT does not vary significantly with the model probabilities since IMM adapts the

model probabilities at each time instant & with the received measurements (with the likelihoods)
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Route 1 | Route 2 | Route 3

RMSE. (m) 2.5884 | 1.9522 | 2.0751

RMSEk(m) 4.4747 5.1048 4.6308

RMSEpgp(m) | 3.9542 | 2.6499 | 3.0477

RMSEppy(m) | 2.9012 | 2.4021 | 2.3864

Table 4.11: RMSE errors associated to the results in figures 4.15(a), 4.15(b) and 4.15(c).

as demonstrated by (3.23).

picr = [ 0.7 0.3 } (4.6)

The results can be seen at the bottom of the figure 4.16. It compares the EKF model
probabilities estimated by IMM between the default model probability and the newest one. These
model probabilities corresponds to the route 1 with the same parameters as in the simulation

shown in figure 4.6.

(a) EKF mode probabilities with the default (b) EKF mode probabilities with the new
mode probabilities: 0.5 mode probability: 0.3

Figure 4.16: EKF Mode probabilities comparison between the original and the one shown in
(4.6)

One can see that there the difference is almost small. Furthermore these results are similar
to the ones shown in figure 3.7. It can be seen that the initial EKF mode probability of figure
4.16(b) is the one shown in the second column of (4.6). Then the model probabilities decreases

upto the first peak. It is because the model probability of the KF increses, .i.e. the the uniform
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motion model followed by the KF is more certain than the nearly coordinated turn model
followed by the EKF. It has sense since the target is moving eastwards upto the third crossing.
Then the target performs a coordinated turn to the left and the EKF mode probability increases
since the CT model is more certain than the uniform motion model. Then the target moves
northwards upto the next crossing which performs again another coordinated turn to the left.
It corresponds to the second peak. After the second turn the target moves westwards following
a uniform motion resulting in a decrease of the EKF mode probability (or the EKF likelihood)
and an increase of the KF mode probability (or the KF likelihood). The likelihood gives the
probability that the position estimated by each tracking filter be certain. Thus if a filter has a

likelihood greater it means that its estimates are close to the true positions.

Case 6. Yrssr and Jrgsr discrepancy: At this point we know that the estimation of the

target position is found by means of a position technique that takes into account the distances
to several anchor nodes. These distances are found using using both the RSSI which is related

to the path loss model as shown in (4.7):
RSSI = Py — 10yrsslogiodi—r — v, (4.7)

where d;_, is the distance between the transmitter and the receiver and v is a lognormal variable
modelling the shadowing noise. On the one hand, the problem of estimating the distances is that
the user needs to know the corresponding value of yrgsr associated to the each RSSI. In other
words an estimate Yrggr is needed since the real one is unknown. On the other hand it is quite
difficult to obtain this value since the scenario is randomly changing every time. Also it might

exist different yrggr v for each of the wireless links between every anchor and the receiver.

The simulator allows the possibility to realize simulations modifying both 4rssr and Yrssr
with the parameters "Real Path Loss Exponent” and ”Estimated Path Loss Exponent”. We
will show an example when the path loss exponent associated to the RSSI and the path loss
exponent used to estimate the distances are different, i.e. Yrssr # Yrssr- For that we consider
only two routes, the same input control parameters than in figure 4.6 except the Estimated
Path Loss Exponent that will be set for instance to 3. The results are shown respectively in
figures 4.17 and 4.18 with their corresponding RMSE errors shown in table 4.12.

It can be seen that a discrepancy between the real path loss exponent and the estimated path
loss exponent implies an increase of the average position errors as seen in table 4.12. Moreover
notice that the noise introduced to the system is very small compared in a real scenario. It
means that in practice large position errors can be due to this discrepancy in addition to other
factors such as the shadow fading, multipath and interference. Furthermore larger errors would
be obtained if for instance different real path loss are different for each wireless link. Thus the
user should have a vector 4rgsr complicating then the computation of the estimated position.
Although the simulator does not take into account this effect the idea was to demonstrate what

happens when both 4rssr and yrggy differs.
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Figure 4.18: Route 3. Comparison between equal and different values of Yrssr and Yrssr

4.3 Summary
This chapter can be summarized as follows:

e A matlab simulator has been developed to test and validate both the positioning techniques

and the set of tracking filters described in chapter 3.

e Several cases or scenarios have been proved in order to test the performance of the set of

algorithms, specially the IMM-CT algoritm. The following main cases have been consid-
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YRSSI = 2,YRSST = 2 | YRSST = 2,YRSST = 3

Route 1 | Route 3 Route 1 | Route 3
RMSE, (m) 2.2707 | 2.0799 7.2486 | 6.7783
RMSEykp(m) 3.2633 | 4.3874 7.2161 | 6.6786
RMSEgpkg(m) | 3.5648 | 4.0344 7.4151 | 8.0672
RMSEq\p\(m) | 2.4772 | 2.5037 6.8469 | 6.6414

Table 4.12: Comparison of the positioning between equal and different values of vrgs; and

Arssr for both Route 1 and Route 3.

ered:

Case2: Impact of o4, variation: study the performance of the system when the

noise of the received power varies.

— Case3: 0, dependency: study the performance of the system for different standard

deviation of the position measurements.

Case4: Adaptation of Uxp and Uggp: analysing the efficiency of the set of tracking
filters taking into account the dependency on the acceleration noise covariance (the

variance of the process acceleration noise).

Caseb: Adaptation of IMM-CT parameters: Validation of the performance of the
IMM algorithm depending on the IMM-CT parameters: mcr and por.

— Caseb: yrgsr and Yrgsr discrepancy: Study the performance of Multilateration when

the real and the estimated path loss exponents differs.

e It is demonstrated that IMM is the best tracking solution because it provides the smallest
RMSE in most of the cases. It does not mean that IMM is always the best. Its performance
is dependent on both the scenario and the performance of each filter. For example, IMM
performance is dependent on the both KF and EKF performances. In conclusion IMM is
a novel solution for tracking targets because it evaluates the measurement over different

filters and gives a high likelihood to the one that most matches to the true positions.

e The case6 is considered because that effect is quite common in practice. It demonstrates
that the average position error increases significantly assuming low shadowing noise. Hence

it demonstrates that multilateration performance is very bad in practice.






Chapter 5
Experimental development

This chapter deals with the implementation of the localization system carried on during a live

7t at the UAB campus. The idea of the localization system is to use

demonstration on July
some of the techniques discussed in Chapter 3 in a real scenario. Since the live demonstration is
realized along a straight road without curves, only one single Kalman filter with a linear model

is used. The sections included in this chapter are the following:
1. Scenario Description: this section shows the map of the zone where the measurement
campaign is carried on as well as an explanation of the scenario under consideration.
2. Measurement Campaign: this section gives an explanation of the measurement campaign.

3. Implementation of a Java-based navigator: this section explains how the full navigator is
built.

4. Experimental Validation: this section is the demonstration of the developed localization

System.

5. Photos of the demonstration day.

5.1 Scenario Description

Figure 5.1 shows the main idea of this scenario which is composed basically of the following

elements:

e Reference nodes (occupation sensors in the figure or parking sensors) with known coordi-
nates located at each parking slot. These nodes have a magnetic sensor that detect if there
is a car or not. These nodes transfer to the supernode the state of the parking (busy/not

busy).

87
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Figure 5.1: Scenario Description.

e The unknown node brought by the user or integrated in the car. This node must be
real-time tracked to know from the central site through which route it moves. In this

application the user only can drive in one direction.

e The super node whose actions are mainly to relay the car detection information to the

central server.

e The central server which have a database to store for each parking sensor the following
information: the ID(Identificator), the state of the parking, the coordinates, and the MAC
address. The communication between either the super nodes and the unknown node is
carried on via 3G(Third Generation) or GPRS(General Packet Radio Service).

The communication between the parking sensors and the superNode is carried on by World
Sensing is realized through multihop. The detection of the parking is done by World Sensing as

well.

The WSN used in the XALOC live demonstration is composed by a total of 18 sensors manu-
factured by the company WorldSensing; each sensor located at each parking slot. Regarding the
localization strategy, each parking sensor sends periodically broadcast messages containing its
node ID(Identification) in addition to other parameters. Then the user terminal at the vehicle
is equipped with a 3G USB(Universal Serial Bus) dongle and a sensor node that performs the

following:

e Measuring the RSSI of the received broadcast messages.

e Estimating the real-time vehicle position with the different RSSI’s and parking sensor’s
1Ds.

e Position information is used to extract parking information from XALOC database server.

e Real-time mapping of the vehicle position on the map previously downloaded from

GoogleMaps server.
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@ Parking sensors : Super node

Figure 5.2: Localization Strategy

e Real-time mapping of the parking state information downloaded from the server via 3G

on a the map.

The user terminal performs all the previous operations by means of a developed software

that is discussed in section 5.3.
Figure 5.2 gives the idea of the localization strategy using a WSN.

The measurements zone is the fire department parking shown in the map of the figure 5.3.
The parking areas in this area are in battery instead of on-line car. Therefore 18 online cars are
marked as shown in the figures 5.4(a), 5.4(b) and 5.4(c). Figure 5.5(a) shows one of the sensors
located in one of the parkings. This sensors are placed inside a robust box like the shown in
figure 5.5(b) which are the ones seen in each of the parking slots in set of figures of 5.4. All
sensor nodes are based on the ZigBitTMGOO /800/900 MHz Wireless Module ATZB-900-B0 from
Atmel industry.

Figure 5.3: Scenario map.
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(a) (b)

(c) (d)

Figure 5.4: 5.4(a): Scenario Preparation, 5.4(b) and 5.4(d): online car marking, 5.4(d): Sensor
package

(a) Photo 1 (b) Photo 2

Figure 5.5: Photol: Parking sensor, Photo 2: a parking sensor placed below a parked car

The RF characteristics of this wireless module is shown in following table 5.1.
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Range, Outdoors

Parameters Condition Range Unit
779 to 787 MHz
Frequency Band 868 to 868.6
902 to 928
Number of Channels 15
Channel Spacing 2 MHz
Transmit Output Power —11 to +11 dBm
Receiver Sensitivity AWGN channel, PER=1%
20 Kbits -110
40 Kbits PSDU length of 20 octets -108
100 Kbits -101
250 Kbits -100
dBm
200 Kbits 97
400 Kbits PSDU length of 127 octets -90
500 Kbits -97
1000 Kbits -92
BPSK modulation 20 (at 868 MkHz)
40 (at 915 MHz)
On-Air Data rate 100 (at 868 MHz) | Kbps
0-QPSK modulation
250 (at 915 MHz)
and 784 MHz)
TX Output/RX Input Nominal Impedance For balanced output 100 Q
For balanced output 6 Km

Table 5.1: ATZB-900-B0 Sensors. RF Characteristics [16].

5.2 Measurement Campaign

First multilateration is used in a real scenario (outdoor) in order to evaluate its performance

in practical scenarios when the driver is moving at a constant speed. The number of anchor
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nodes used to perform multilateration is three (trilateration). The results of multilateration in
a real scenario composed by 6 reference nodes is shown in figures 5.6 and 5.7 for both low and
high moving speeds. The reference nodes are shown in blue and the estimates positions in red.
The x-dimension corresponds to the UTM Easting whereas the y-dimension corresponds to the

UTM Northing. Both are referred in m from the Greenwich meridian and the from the equator.
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4.5947 T T T T T T T
X Parking sensors
459471 : X Position Measurements
45047 X R
45947 X B
B X X
2 45047 : X X : : B
= x X x
: o, Sollle
45947 B
xx&xx x X
X X
4.5947} X i
45947 B
4.5947 1 1 1 1 1 1 1 1 1
42605 4.2606 4.2606 4.2607 4.2607 4.2607 4.2608 4.2608 4.2609 4.261  4.261
Easting (m) % 10°

Figure 5.6: Triangulation-based position measurements at low speed
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Figure 5.7: Triangulation-based position measurements at high speed
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One can see above that the performance of multilateration in real scenarios is really bad
giving large position errors as well as position estimates outside the measurement area. One
reason of that is due to the multipath effect resulting in large variations on the RSSI and
therefore giving bad position estimations. Another effect that can happen in wireless channels is
the random temporal variation of the path loss exponent for each wireless link. The performance
of multilateration when the noise power is high resulting with large position errors (azhad =

30dB, o, = 60m) is demonstrated using the simulator. The results are shown in figure 5.8.
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Figure 5.8: Multilateration based positioning

It can be seen that some position estimates appear outside the road bounds specified by
the anchors positions. Notice that the simulator does not consider all the effects that appear
together in a real wireless channel. In fact higher position errors than 9 m appear in practice. For
this reason another positioning technique is developed to have better position estimates. This
developed method is called as WAPM(Weighted Average Power Method). Using WAPM
the estimated positions appear always inside the scenario field. It is achieved by assigning
weights for each of the coordinates of those anchors that participate in the positioning. These
weights are proportional to the RSSI and averaged over all the RSSIs. Thus we can assure that
the position of the driver will be allays inside the measurement area and close to that anchor

with highest RSSI, i.e. highest weight.

Again the WAPM is formulated in (5.1) as in the section 4.1.
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(,’IA;',Q)ZAOC

_ RSSIL, o
a = Zi\;l RSSL? n= 17 Nanchors;

(5.1)

where Aoy is a matrix containing the (x,y) coordinates of N selected reference nodes with the

highest RSSI that participate in the positioning.

The performance of this method is demonstrated in practice as shown in figures 5.9 and 5.10
for both low and high speed, providing higher accuracy in the order of few meters. Furthermore

the probability that all position estimates appear inside the area is higher than in multilateration.
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Figure 5.9: WAPM-based position measurements at low speed
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Figure 5.10: WAPM-based position measurements at high speed

A theoretical validation of WAPM can be demonstrated with the simulator. One can see in
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figure 5.11 that all the position estimates appear inside the road bounded by the parking sensors

even for high fadings such as U?had =30dB and 02 = 60m.
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Figure 5.11: Weighted Average Power based positioning with 4 reference nodes as in 5.8

Although WPAM guarantees that the user position is inside the measurement region, it does

not guarantees the true user position. Due to high multipath interference (constructive/destruc-

tive) the position measure makes jumps forward and backward. Initially this jumps were very

high in order between 10 m —50m. In order to overcome this problem a one dimensional Kalman

filter was introduced into the localization system. The reason to use one dimension instead of

two dimensions as in chapter 4 is because the chosen scenario for the XALOC live demonstration

is a straight road with no curves. Therefore the Kalman equations used for the navigator are

the following:

State vector: The first element of the state vector is not the x-dimension because the

target is not moving through the longitudinal plane of the map but is moving along a diagonal

projection straight line since the scenario road is diagonal. Therefore the value d is the distance

between an initial point (zg, y) in the projection straight line and the estimated position of the

driver.
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X = (5.2)

The projection straight line contains the projected estimated positions. It is formulated in
(5.3).

Lp z (b — a1z — agy) al
— + < a2 + a2 9 (53)

Yp Y 1 2 as

where
m=JL— Y% (5.4)
Tr1 — X0

b=1yo—zom (5.5)
a; =-—m (5.6)
as =1, (5.7)

being (zg,yo) and (z1,y1) the coordinates of initial and final points that define the projected
straight line, (z,y) the coordinates of the estimate and (z,y,) the coordinates of the projected
estimate. The motivation to apply the projection is the same as most of GPS navigators apply,

i.e. the position of the driver is located in the middle of the road.

State equation:

1 T T2%/2
k) +
0 1 T

Observation equation:

2k +1) = [ 1 o}x(kﬂ) (5.9)

As the model is one dimension the covariance of the process acceleration noise is also a
unidimensional matrix: Qx1 = 02. As well the covariance of the measurements is Rix1 = ag.
The initialization of the process covariance matrix is found in section 3.3. The optimal values
of the KF that have been found after a lot of campaign measurements are the ones shown in
(5.10).
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o2 = 3m/s* (5.10)
R = 26m (5.11)
T = 25s (5.12)

The interval of the measurements in the final demonstration is 2.5 s thus avoiding two groups

of activated sensors.

5.3 Implementation of the navigator

The car carries the base node connected to the tablet netbook via USB interface that receives the

broadcast messages from all parking sensors. The navigator implemented for vehicle localization

and guidance includes the following components:

e User Terminal: netbook+sensor node+3G USB dongle.

e Application: JAVA programming language+tinyOS

A block diagram of the navigator implementation is shown in figure 5.12.

Kalman.java

Main Program

RssiDemo.java

Broadcast messages

(R,U,d7 T, x(k_l)) (UTNI.TP UTl\lyp)

Window.java

(UTMz,,, UTMy,)

(GEOz,,GEOy,)

Coordinateconversion.java

AnchorCoordinates AnchorCoordinates=(x1, ..., TN; Y1, Y2..-; YN)

ParkingSensors.java

Figure 5.12: Navigator block diagram

The navigator is developed in Java using the Java IDE(Integrated Development Environment)

Netbeans. Java is an object oriented language which is based on several interconnected classes



98 Chapter 5. Demonstration Testbed

and objects. An object is an instance of a class and a Java class stores information for several
objects. An example: the student class stores objects with the following information: name,

surname, address, age, student ID and course level.

Below is given a description of the set of interconnected classes used for the navigator im-

plementation are:

e Rssidemo.java: this is the main class and the main program. This code is able to recollect
the frames coming from the base sensor node via serial USB port. Then the received power
source is read with the TinyOS function msg.get_rssi() from the received packet msg. This
class uses TinyOS Java libraries provided to interact with the received packets from the
WSN through the base node. TinyOS is a free and open source component-based operating
system developed by the University of Berkeley. TinyOS is an embedded operating system
optimized for low-power energy constrained devices and written in the nesC programming
language as a set of cooperating tasks and processes interconnected. TinyOS is based in

event-driven handles.

The positioning computation as well projection is done in this code including the call to

the Kalman filter. The projected computed position is send to the Window class.

e Window.java: this class is the application window of the navigator having all the swing
Java objects (buttons, checkboxes, layeredpanes and so on). The origin of Window .java is
the library jposition[60] developed as an application for handling maps using Google Maps
from Java. The input of this application are the site coordinates in the GPS format. The
output is a map downloaded from Google Maps server as well as a marker icon over the

site coordinates.

The navigator requirements were to show both the real-time user’s position and the real-
time parkings state with different markers (or icons). The problem we found with the
jposition application is that the request to Google Maps can not be done every time the
position is computed. It is because during the downloading time of the map the parkings
states and/or the user’s position can be changed since the driver is moving. Therefore the
objective was to draw in the correct positions on map the parkings icons as well as the
user’s position in real-time. The map can be either downloaded from internet or loaded
locally depending of which of both provided buttons are selected: cold start and warm
start. If the cold start button is clicked then the map is downloaded from Google Maps
centred at the first computed user’s position. The advantage of the warm start button is
that a connection to the Google Maps server is not needed. The user’s position icon as
well as the parkings icons are drawn using the jLayeredPane class (an available Java class)
which allows to draw objects at different independent layers. At the layer 1 we have the

icons showing the parkings such us their state with two icons: blue for not busy and red
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for busy. At the layer 2 we have the driver position icon shown in green.

e ParkingSensor.java: this class is used to create objects that store the UTM(Universal
Traverse Mercator) coordinates of every parking sensor. In the UTM definition, the world
is divided in zones along longitudinal plane and in letters along the latitudinal plane. The

UTM coordinates have the following form:
zone letter Northing FEasting (5.13)

where Easting and Northing are expressed in m from the reference meridian Greenwich
and from the equator. In Spain the UTM zone is 31 and the UTM letter T.

e KalmanFilter.java: this class implements the one dimension Kalman filter. As the kalman
is of one dimension both the measurements covariance matrix and the process acceleration
noise covariance matrix have dimensions 1 x 1 being thus the variance. The input to this
class is: the measurement d, the measurements variance, the acceleration noise variance,

the sampling time and the previous state vector.

e CoordinateConversion.java: this class is used to transform from geographical coordinates

to UTM coordinates and vice-versa.

The navigator is called ARID NAVIGATOR and is shown in figure 5.13. We can see the

base node connected on the left to the netbook.

2010/07/15 17 : 44

Figure 5.13: ARID Navigator based on Java on a tablet netbook.
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The navigator Java application has the following elements:

1. Central coordinate: it gives the central GEO(Geographical) coordinate of the map.

2. Measured coordinate: it is the GEO coordinate obtained with trilateration taking the
RSSI’s of the received broadcasts messages. A coordinate transformation from UTM to

GEO is taken into account.
3. Cold start button: it allows to download a map centred at first computed user’s position.

4. Warm start button: this options allows to work without the need of downloading a map

of the zone. It loads a locally stored map of the zone.

5. Refresh button: this option available only if cold start button is selected. This button

refresh the map and downloads another map centred at the driver position.

6. Audio On/Off: if selected, an audio message appears every 10 s to announce the number

of available parking slots.

The navigator shows the status of each parking slot with blue and red icons drawn over the
map. It has been proved that when a car enters and leaves a certain parking slot, the parking
icon on the map is updated with the corresponding one and also an audio message says the

number of free parking slots. Figure 5.14 shows the Java application of the navigator:

Xaloc Project. Car Positioning EEx

ARID NAVIGATOR

© 2010 SPCOMNAY - XALOC PROJECT

cordinate |41 500652 114187 | Central cordinate |41 50085 2 114187

Cold start

Refresh

[_| Audio Offion

Figure 5.14: ARID Navigator

The green point seen on the map in figure 5.14 is the driver’s position. It moves exactly in

the middle between the parking sensors due to the projection.
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5.4 Experimental Validation

The scenario is composed by 18 sensors nodes located in 18 parkings in diagonal(9 parking slots
per site) in an area of dimensions 80 x 70m?. Thus the experimental validation is realized
through a diagonal projection straight line along the diagonal road. In order to demonstrate
that the localization system works even with different sensors from other manufacturers several

campaign-measurements are carried taking into account the following scenarios:

1. Estimation of the car position at several known positions: The car position estimates are
obtained at several known positions along the road between the parking slots. It is not

considered tracking.
2. Tracking of the car’s position that is moving at a constant speed of 10Km/h.

3. Tracking of the car’s position that is moving at a constant speed of 20Km/h.

For all the scenarios the following Kalman parameters:

o2 = 3m/s? (5.14)
R = 10m (5.15)

The results of the three scenarios are shown in figures 5.15, 5.16 and 5.17 respectively.
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Figure 5.15: Scenario 1: One realization of the estimation of the car at several fixed locations

Figure 5.15 shows a mean average error of 2.5824 m. The result is considered valid because

as a reference GPS achieves location precisions between 2.5 — 3 m.
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Figure 5.16: Scenario 2: Two realizations of the car moving at a constant speed of 10 Km/h
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Figure 5.17: Scenario 3: Two realizations of the car moving at a constant speed of 20 Km/h

The different realizations in figure when the car moves at a constant speed of 10 Km/h gives

a mean error of 2.6412m whereas when the car moves a constant higher speed of 20 Km/h a

mean error of 3.1606 m. Both are greater than the first scenario. Furthermore the error increases

with the car speed which means that for speeds higher than 20 Km/h the position accuracy

decreases achieving values greater than 3.1606 m. The parameter’s navigator have been adjusted

to allow the tracking at low considerable speed. Speeds around 20 K'm/h are common when the

driver is paying attention to the parking panels indications or the provided online navigator.
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5.5 Summary

One the one hand, this chapter has shown a developed localization system based on a Wireless
Sensor Network. First multilateration is used in order to validate its performance in a real
scenario when the driver is moving at a constant speed. It is seen that the multilateration
position estimates have large position errors higher thant 5m most of them appear outside
the scenario region. Therefore a new positioning method called Weighted Average Power
Method is found such that it concentrates all the position estimates always inside the scenario
field. The last demonstrates position errors in the average of around 2 — 3m and thus it can be

as an appropriate positioning technique for practical scenarios.

On the other hand a Java-based navigator called ARID NAVIGATOR has been developed
to show to the driver its real-time estimated position over a map. In addition to the position
the navigator informs the number of free parking slots either by audio or graphically showing
their location on the map. The map can be downloaded first from Google Maps server or loaded
locally depending on the selected button provided by the navigator. cold start or warm start.

The navigator is validated and it was demonstrated during the live demonstration carried on
July 7t 2010.






Chapter 6

Conclusions and Future work

This master thesis is sponsored by the regional XALOC project in the framework of the IN-
FOREGIO program (INFOREGIO/AJUTS 2009) funded by the Autonomous Government of
Catalonia. The carried work has dealt with the theoretical validation as well as the experimental

development of a centralized positioning and tracking in a Wireless Sensor Network.

Concerning the theoretical validation, it involves vehicle localization and tracking based on a
novel tracking algorithm called IMM (Interacting-Multiple-Model) which uses one Kalman
filter for uniform motion tracking and one Extended Kalman filter for the coordinated turns.
The theoretical analysis demonstrates that the performance of IMM algorithm is better than
having one KF and another EKF running in parallel independently because IMM compares the
corresponding probabilities of the measurement evaluated in the probability density function of

every model. In other words, IMM gives a mixed estimation based on the models probabilities.

The experimental development deals with the implementation of a Java-based navigator
on a tablet netbook. The navigator informs the driver of its real-time position on the map
and also the number of available parking slots. To validate the implemented navigator, a live
demonstration using real sensors is carried out. These sensors send information messages of
the parking state to a superNode that is connected with a database server. The experimental
development demonstrates that multilateration technique using distances from each parking
sensor’s RSSI is not accurate when the target is moving. For that reason, a new positioning
method called Weighted Average Power Method is proposed. Besides, a Kalman filter is adapted

to track the driver.

The XALOC project has had a large impact in the in the press. During the demonstration
day tens of producers came to record the live demonstration. The next day a lot news were

published. Some of the recorded newspapers are found in the appendix D.

Future work will be based on distributed approaches such as:

105
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e Distributed position

e Distributed tracking

Also a practical implementation of a distributed/centralized IMM algorithm in order to track

the driver through the straight lines and through the turns.

Moreover, collaborative localization will be implemented which in WSN with a few number
of reference nodes. Thus every unknown sensor will be able to obtain its coordinates from its

neighbour’s coordinates by means of a collaborative positioning algorithm.
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Appendix A

Scenario definition code

This appendix deals to show the involved code to create the street scenario as well as the target

routes and the anchors positions. The set of matlab .m files shown here are the following:

e GeneralScenario.m : this is the main file. In order to generate the true track a vector
called order contains the order to follow in each crossing which can be either straight on,

turn left or turn right.

e AnchorsPosDefinition.m: this code is intended to create a matrix with positions of the an-
chors. The third row of this matrix is the ID of the street where those anchors belongs. The
street ID’s are numbered like a 3 x 3 (for vertical streets) matrix: 111213;212223; 313233
and like a 2 x 3 for the horizontal streets: 41,42,43;51, 52, 53.

e changeDirection.m: this code which is executed when the target is inside in a crossing and
change the direction accordingly to the route vector and a direction vector. Route vector
only has the following values: 1 for going straight on, 2 for turn left and 3 for turn right.
The direction vector helps to indicate whether in which direction the target moves either
in x or in y axis. It can have the following values: 1 whenever the target moves with

positive velocity and -1 whenever the target moves with negative velocity.

e maneuver.m: this code performs nearly coordinated turn model inside the crossings when

needed.

e controlTurnRight.m: This function tells with the variables true and false if the target is
located at the border of the crossings to avoid that the target follows its turn right. The

meaning of the variables ”true’ and ” false” are the following:

— true=1: If the target is located at the borders.

— false=0:If the target is inside the crossing

109
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Listing A.1: MATLAB code of GeneralScenario.m

1 clear all;
2 $close all;

3 format short;

5 G m STREET PARAMETERS—————————————————————————————
6 Anchors_Street = 24; SNumber of total Anchors (12 per side)

7 distAnch = 4; %distance between anchors
8 WidthStreet=20;
9 start_x = 2; %this would be the distance from the reference where

10 %the parking lots begin

11 lengthStreet = 2xstart_x +distAnchx ((Anchors_Street/2)-1);

12 T
13

14 S~ SCENARIO AREA ———————————————————————————————————
15 block_horiz = 4; %total of horiz "block"

16 block_vert = 3; Stotal of vert "block"

17 cr=(block_horiz-1)« (block_vert-1); %number of croisses

18 streets=cr; $Number of streets

19 Scenario_Width = block_horizxlengthStreet+WidthStreetx (block_horiz-1);

20 Scenario_Height = block_vertxlengthStreet+WidthStreetx (block_vert-1);

2] B
22

23 % S ——————————————————= DEFINE THE POSITIONS OF THE ANCHORS —-—-———————————————
24 % %We associate the set of anchors of one street to a number that identifies
25 % %this street.

26 %

27 AnchPos=AnchorsPosDefinition (Anchors_Street,block_vert,block_horiz, ...

28 lengthStreet,distAnch,WidthStreet, start_x);
29
E DEFINE THE CROSSINGS IN MATRICES-—-—-—-—————————————

31 %As we have 6 crs in a 4x3 blocks:
32 crl=[lengthStreet lengthStreet+WidthStreet; ...

33 2x (lengthStreet+WidthStreet) 2xlengthStreet+WidthStreet];

34 cr2=[2xlengthStreet+WidthStreet 2+ (lengthStreet+WidthStreet);...
35 2+ (lengthStreet+WidthStreet) 2xlengthStreet+WidthStreet];

36 cr3=[3xlengthStreet+2+xWidthStreet 3x (lengthStreet+WidthStreet);...
37 2% (lengthStreet+WidthStreet) 2xlengthStreet+WidthStreet];

38

39 cré4=[lengthStreet lengthStreet+WidthStreet; ...

40 lengthStreet+WidthStreet lengthStreet];

41 cr5=[2xlengthStreet+WidthStreet 2x (lengthStreet+WidthStreet); ...
42 lengthStreet+WidthStreet lengthStreet];

43 cr6=[3xlengthStreet+2xWidthStreet 3x (lengthStreet+WidthStreet); ...
44 lengthStreet+WidthStreet lengthStreet];

45

46 G————m e m e TARGET PARAMETERS————=———=———— ===
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47 %Now let's start assuming that a mobile node M travels along a certain path
48 %Swith constant velocity. The following parameters are required:

49

50 T_target = 0.01;%sampling time in seconds of the target. Every T_target,

51 %the target has moved vxT_target m.

52 T_motes=5; %$sampling time in seconds of the active motes.

53 %Every T_.motes sg, all active anchors send a message to the target.

54 anchors ML = 4; %number of considered anchors for multilateration computation
55 order=[1,1,1]; %1: go ahead, 2: turn left, 3:turn right

56 path=[51,52,53,54];

57 direction=[1;0]; %this variable helps to indicate whether in which

58 %$direction the target moves either in x or in y axis:

59 %$1: the target moves with positive velocity

60 %—1: the target moves with negative velocity

61 c=1; %to check the order vector

62 v=20x1000/3600; %velocity of the target in m/s

63 distFromAnchors =2; %Distance of the target with respect to the anchors

64 target_state=[2;v;50;0;path(l)]; %$Initial target_state.

65 %It is in the form of [x,vx,y,Vvy,streetID].The last row identifies the target
66 %to that street where it is located

67 rl=WidthStreet-distFromAnchors;

68 r2=distFromAnchors;

69 yaw._rate_left=v/rl; S%turning rate in rad/sg. At the beginning we assume

70 %a constant turning rate

71 yaw_.rate_right=-v/r2; %turning rate in rad/sg. At the beginning we assume
72 %a constant turning rate

73 dt_right=(pi/2)*r2/v; %Need time to turn (pi/2) driving at a constant velocity v
74

75 %$transition matrix

76 F=[1 T_target 0 0;0 1 0 0;0 0 1 T_target ;0 0 0 17];

77

78 G Next Define the turning matrix -————————-—--"-----—-
79 %$We will have two turning matrices: one to turn left and the other to turn
80 %right

81 F———————— Turn left matrix————————-

82 coswt_left = cos(yaw_rate_left+T_target );

83 coswto_left = cos(yaw_rate_leftxT_target )-1;

84 coswtopw_left = coswto_left/yaw.rate_left;

85 sinwt_left = sin(yaw_rate_left*T_target );

86 sinwtpw_left = sinwt_left/yaw_rate_left;

87

88 Turning_left = [1 sinwtpw_left 0 coswtopw_left;...
89 0 coswt_left 0 -sinwt_left ;...
90 0 -coswtopw_-left 1 sinwtpw_left ;...
91 0 sinwt_left 0 coswt_left ];

92

93 % Fo——————— Turn right matrix—-————-———-
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94 coswt_right = cos(yaw_rate_rightxdt_right);
95 coswto_right = cos(yaw-rate_rightxdt_right)-1;
96 coswtopw_right = coswto.right/yaw_rate_right;
97 sinwt_right = sin(yaw_-rate_rightxdt_right);
98 sinwtpw_right = sinwt_right/yaw_rate_right;

99

100

101 Turning_.right = [1 sinwtpw_right 0 coswtopw_right; ...

102 0 coswt_right 0 -sinwt_right ;...

103 0 —-coswtopw.right 1 sinwtpw_right ;...

104 0 sinwt_right 0 coswt_right 1];

105 -~ PATH LOSS MODEL PARAMETERS———————————————————————

106 sigma_shad = 2; $%$shadow fading variance in dB

107 PO = -63.2; %Received power at 1 m used for the received power model in dBm
108 gamma=2;

109 B
110 x=1; %Target Samples

111 ml=1; %$Target estimated samples

112 count=0;

113 S ==~~~ BEGIN THE TRACKING ———————————————————————————
114 while O<target_state(l,x) && target_state(l,x)< max(AnchPos(l,:)) ...

115 && O<target_state(3,x) && target_state (3,x)< max (AnchPos(2,:))
116 count=count+T_target;

117 count=roundn (count) ;

118 %$Now all the received powers of all the anchors are gathered by the
119 %$target. We use the simple path loss model:

120 %Pr (dBm)=PO0 (dBm) -10-gamma-1logl0 (d_-i), where d_i is the euclidean
121 %$distance from the mobile target to anchor i

122

123 $Below we check if the target is inside a cr

124

125 if ((crl(l,l)<target_state(l,x) && target_state(l,x)<crl(l,2)) &s&
126 (crl(2,2)<target_state(3,x) && target_state(3,x)<crl(2,1)) ||

127 (cr2(l,1)<target_state(l,x) && target_state(l,x)<cr2(1l,2)) &&

128 (cr2(2,2)<target_state(3,x) && target_state(3,x)<cr2(2,1)) ||

129 (cr3(1l,1)<target_state(l,x) && target_state(l,x)<cr3(1l,2)) &&

130 (cr3(2,2)<target_state(3,x) && target.state(3,x)<cr3(2,1)) ||

131 (cr4(l,1)<target_state(l,x) && target_state(l,x)<cr4(1l,2)) &&

132 (crd (2,2)<target_state(3,x) && target_state (3,x)<cr4(2,1)) [

133 (cr5(1,1)<target_state(l,x) && target_state(l,x)<cr5(1,2)) &&

134 (cr5(2,2)<target_state(3,x) && target_state(3,x)<cr5(2,1)) |

135 (cr6(l,1l)<target_state(l,x) && target_state(l,x)<cr6(l,2)) &&

136 (cr6(2,2)<target_state(3,x) && target_state(3,x)<cr6(2,1)))

137

138 %Next we need to check wether in which cr is located the target

139 $————————————————— if the target is cr the cr 1 ————————————-

140 if ((crl(l,l)<target_state(l,x)) && (target_state(l,x)<crl(l,2)) &&
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141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

181

182

183

184

185

186

187

(crl(2,2)<target_state(3,x)) && (target_state(3,x)<crl(2,1)))
[true, false,dir, target, xl]=controlTurnRight (direction,v,crl, T_-target, ...
target_state, x,distFromAnchors) ;
if (true==0 && false==1)
[y, x]=maneuver (F,order, c, Turning_left, Turning_.right, target_state, x);
target_state(1:4,x)=y;
else
direction=dir;
target_state=target;
x=x1;
end
end
G if the target is cr the cr 2-——————
if ((cr2(l,1l)<target_state(l,x) && target_state(l,x)<cr2(l,2)) &&
(cr2(2,2)<target_state(3,x) && target_state(3,x)<cr2(2,1)))
[true, false,dir,target, xl]=controlTurnRight (direction,v,cr2, T_target, ...
target_state, x,distFromAnchors) ;
if (true==0 && false==1)
[y, x]=maneuver (F, order,c, Turning_left, Turning.right, target_state, x);
target_state(1:4,x)=y;
else
direction=dir;
target_state=target;
x=x1;
end
end
G if the target is cr the cr 33—~
if ((cr3(l,1l)<target_state(l,x) && target_state(l,x)<cr3(1l,2)) &&
(cr3(2,2)<target_state(3,x) && target_state(3,x)<cr3(2,1)))
[true, false,dir,target, xl]=controlTurnRight (direction,v,cr3, T_-target, ...
target_state, x,distFromAnchors) ;
if (true==0 && false==1)
[y, x]=maneuver (F, order,c, Turning_left, Turning.right, target_state, x);
target_state(1:4,x)=y;
else
direction=dir;
target_state=target;
x=x1;
end
end
F—— if the target is cr the cr 4-—————-
if ((crd4(l,l)<target_state(l,x) && target_state(l,x)<crd(l,2)) &&
(crd4(2,2)<target_state(3,x) && target_state(3,x)<cr4(2,1)))
[true, false,dir, target,xl]=controlTurnRight (direction,v,cr4, T_target, ...

target_state, x,distFromAnchors);
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189

190
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194
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200
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206
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213

214

215

216

217
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219

220
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224
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232

233

234

if (true==0 && false==1)

[y, x]=maneuver (F,order, c, Turning_left, Turning_.right, target_state, x);

target_state(1:4,x)=y;
else
direction=dir;
target_state=target;
x=x1;
end
end
G if the target is cr the cr 5-————————-
if ((cr5(1l,1)<target_state(l,x) && target_state(l,x)<cr5(1,2)) &&
(cr5(2,2)<target_state(3,x) && target_state(3,x)<cr5(2,1)))
[true, false,dir,target,xl]=controlTurnRight (direction,v,cr5, T_-target, ...
target_state, x,distFromAnchors) ;
if (true==0 && false==1)

[y, x]=maneuver (F,order, c, Turning_left, Turning_.right, target_state, x);
target_state(1l:4,x)=y;

else

direction=dir;

target_state=target;

x=x1;

end
end

o

g~ if the target is cr the cr 6-——————-

if ((cr6(l,1l)<target_state(l,x) && target_state(l,x)<cr6(l,2)) &&
(cr6(2,2)<target_state(3,x) && target_state(3,x)<cr6(2,1)))

[true, false,dir,target,xl]=controlTurnRight (direction,v,cr6, T_-target, ...

target_state, x,distFromAnchors) ;
if (true==0 && false==1)
[y, x]=maneuver (F,order, c, Turning_left, Turning_.right, target_state, x) ;
target_state(1l:4, x)=y;
else
direction=dir;
target_state=target;
x=x1;
end

end

else %$If the target is not in a cr

$Before it must check if the target has crossed one of the possible

%$crs. We must do it for each cr.

if x>1
if ((crl(l,l)<target_state(l,x-1))&&(target_state(l,x-1)<crl(l,2))é&&...
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235 (crl(2,2)<target_state(3,x-1)) && (target_state(3,x-1)<crl(2,1)))

236 [target_state,direction, c]=changeDirection(direction, order,c,v,crl, ...
237 distFromAnchors, start_x,target_state, x);

238 end

239 $—-——————-——-——-—————--—-5%1If target has crossed cr 2-————————————————————

240

241 if ((cr2(l,1l)<target_state(l,x-1) && target_state(l,x-1)<cr2(1l,2)) &&
242 (cr2(2,2)<target_state(3,x-1) && target_state(3,x-1)<cr2(2,1)))

243 [target_state,direction,c]=changeDirection(direction, order,c,v,cr2, ...
244 distFromAnchors, start_x,target_state, x);

245 end

246

247 %$-——————————-————-——-—-%1If target has crossed cr 3-—————————————————————

248 if ((cr3(l,1l)<target_state(l,x-1) && target_state(l,x-1)<cr3(1l,2)) &&
249 (cr3(2,2)<target_state(3,x-1) && target_state(3,x-1)<cr3(2,1)))

250 [target_state,direction, c]=changeDirection(direction,order,c,v,cr3, ...
251 distFromAnchors, start_x,target_state, x);

252 end

253 %$——————————————————-%If target has crossed cr 4-————————————————————

254 if ((crd4(l,l)<target_state(l,x-1) && target_state(l,x-1)<cr4(l,2)) &&
255 (crd4(2,2)<target_state(3,x-1) && target_state(3,x-1)<cr4(2,1)))

256 [target_state,direction,c]=changeDirection(direction,order,c,v,cr4, ...
257 distFromAnchors, start_x,target_state, x);

258 end

259

260 $-———————-——-———-—-———---—-5%51If target has crossed cr 5-————————-————————————

261 1f ((cr5(1l,1l)<target_state(l,x-1) && target_state(l,x-1)<cr5(1,2)) &&

262 (cr5(2,2)<target_state (3,x-1) && target_state(3,x-1)<cr5(2,1)))

263 [target_state,direction, c]=changeDirection(direction,order,c,v,cr5, ...
264 distFromAnchors, start_x,target_state, x);

265 end

266 %——————————————————-%1f target has crossed cr 6-—————————————————————

267 1if ((cr6(l,1l)<target_state(l,x-1) && target_state(l,x-1)<cr6(l,2)) &&
268 (cr6(2,2)<target_state(3,x-1) && target_state(3,x-1)<cr6(2,1)))

269 [target_state,direction,c]=changeDirection(direction,order,c,v,cr6, ...
270 distFromAnchors, start_x,target_state, x);
271 end

272 end

273 target_state (5, x)=path(c);

274 x=x+1;

275

276 target_state(l:4,x)=Fxtarget_state(l:4,x-1);
277 end

278 target_state=roundn (target_state);

279 end

280 save linea_recta.mat target_state

281
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282 figure(l), plot (AnchPos(1l,1:length(AnchPos)),AnchPos(2,1:1length(AnchPos)), ...
283 'x'", 'markersize',5);

284 hold on

285 axis ([0 4xlengthStreet+3«WidthStreet 0 3xlengthStreet+2+«WidthStreet]);

286 plot (target_state(l,:),target_state(3,:), 'b', 'markersize',5);

287 legend ('Reference Nodes', 'real track',

288 'estimated track with multilateration', 'Location', 'NorthEast');

289

290 F——————— TO MAKE A MPG MOVIE: is a set of image frames ———————

291 % nframes=length (target_state)-1;

292 % M=moviein (nframes);

293 $ for it=l:nframes

204 % figure(2), plot (AnchPos(l,1:1length (AnchPos)), ...

295 %$AnchPos (2,1:1length (AnchPos)), 'x', 'markersize',5);

206 % axis ([0 4xlengthStreet+3xWidthStreet 0 3xlengthStreet+2+«WidthStreet]);

297 % hold on

298 % ©plot(target_state(l,it),target_state(3,1it), 'bx', 'markersize’',5);

209 % plot ( estimated_pos_target (l,it), estimated.-pos_target (2,it), 'r*',

300 % 'markersize',10);

301 % if it>1

302 % plot(target_state(l,1:it-1),target_state(3,1:it-1),"'x"', 'Color’', ...

303 $[135;206;250]/255, 'markersize',5);

304 % plot ( estimated.pos_target (l,1:it-1), estimated_pos_target(2,1l:it-1),...
306 %$'x','Color', [255;192;203]/255, 'markersize',10);

306 % end

307 % legend('Reference Nodes', 'real track', ...

308 %'estimated track with multilateration', 'Location', "NorthEast');

309 % M(:,it)=getframe;

310 % close all;

311 % end

312 % movie(M,1);

313 % save trackingML2_withoutnoise.mat M

314 Sconvert the movie to mpeg format to play the mpeg file: unix('trackingML.mpg')
315 % mpgwrite (M, jet, 'trackingML2 withoutnoise.mpg');

Listing A.2: MATLAB code of AnchorsPosDefinition.m

e e DEFINE THE POSITIONS OF THE ANCHORS —————————————————
$We associate the set of anchors of one street to a number that identifies
$this street. The function returns a matrix with

%$[x,y,streetID, gamma_near,gamma_-far, sigma_shad._near, sigma_shad_far]

function [AnchPos]=AnchorsPosDefinition (Anchors_Street,block_vert,block_horiz, ...
lengthStreet,distAnch,WidthStreet, start_x)

Total_Anchors=Anchors_Streetx (block_vert-1)x (block_horiz)...
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11

12
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14

15

16
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30

31

32
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45

46
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49

50

51

52

53

54

55

56

+Anchors_Street«x (block_horiz-1)* (block_vert);

AnchPos = zeros (3, Total_Anchors); $%$Anchors Positions.
%$AnchPos (1:2,73) = (x,y) coordinates for the anchor J

N=Anchors_Street;

a=1;

z=a;

J=2;

g=11;

s=(lengthStreet+«block_vert+WidthStreet* (block_vert-1))-start_x;
pattern=s:-distAnch:s- (distAnch* (Anchors_Street/2)-1);
A=pattern'xones(l,block_vert);

A=A(:);

B=( (WidthStreet+lengthStreet) * (0O:block_vert-1)) "+xones (1,Anchors_Street/2);
B=B';

B=B(:);

y=A-B; %This vector contains the y coordinates of all anchors nodes placed

%in vertical streets.

$Below positions of those anchor nodes that are placed along the vert
$streets are filled
for i=l:block_horiz-1
%For x coordinates of the left side nodes
x_left=lengthStreet*i+WidthStreet~* (i-1);
%$For x coordinates of the right side nodes
x_right=lengthStreetxi+WidthStreet«i;
AnchPos (1,a:2: (a-1)+N*xblock_vert)= x_left;
AnchPos (1, j:2: (a-1)+Nxblock_vert)= x_right;

%$For y coordinates of the left side nodes
AnchPos (2,a:2: (a-1)+Nxblock._vert)= y;
$For y coordinates of the right side nodes

AnchPos (2, j:2: (a-1) +N+«block_vert)= y;

for n=l:block_vert

AnchPos (3,z: (z-1) +N) =g+ (n-1) ;
z=z+N;

end

a=a+Nxblock_vert;

z=a;

j=a+l;

g=11;

g=g+10+*1i;

end

m=block_vert-1;

j=a+l;
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57 n=1;
58 g=41;
59 k=0;

60 %$Below positions of those anchor nodes that are placed along the horiz
61 %streets are filled

62 pattern=start_x:distAnch:start_x+ (distAnchx (Anchors_Street/2)-1);

63 A=pattern'=*ones(l,block_horiz);

64 A=A(:);

65 B=((WidthStreet+lengthStreet)* (0:block_horiz-1)) '+ones(l,Anchors_Street/2);
66 B=B';

67 B=B(:);

68 x=A+B; %This vector contains the x coordinates of all anchors nodes placed
69 %in horizontal streets.

70

71 for p=l:block_vert-1

72 y-left=lengthStreet*sm+WidthStreetm;

73 y-right=lengthStreet+m+WidthStreet* (m-1);

74 %$For y coordinates of the left side nodes

75 AnchPos (2,a:2: (a-1)+N«block. horiz)= y_left;

76 %For y coordinates of the right side nodes

77 AnchPos (2, j:2: (a-1)+N«xblock_horiz)= y_right;

78

79 %For x coordinates of the left side nodes

80 AnchPos(l,a:2: (a-1)+N«+«block_horiz)= x;

81 S%For x coordinates of the right side nodes

82 AnchPos (1, j:2: (a-1)+Nxblock_horiz)= x;

83

84 for n=l:block_horiz

85 AnchPos (3,z: (z-1)+N)=g+(n-1);

86 z=z+tN;

87 end

88 a=atN*block_horiz;

89 m=m-1;

90 n=n+1;

91 J=a+l;

92 g=41;

93 g=qg+10*p;

94 end

95

96 FTo e END OF ANCHOR POSITIONS—————————————————————————

Listing A.3: MATLAB code of changeDirection.m

1 function [target_state,direction,c]=changeDirection(dir,ord,cl,v,targetState, x)
2 target_state=targetState;

3 direction=dir;
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4 1if dir(l,1) ==1 && ord(cl)==2 %$if target turn left it changes the direction
5 direction(2,1)=1;

6 direction(1,1)=0;

7 target_state (2,x)=0;

8 target_state (4, x)=v;

9 elseif dir(l,1)==-1 && ord(cl)==

10 direction(2,1)=-1;

11 direction(1,1)=0;

12 target_state (2,x)=0;

13 target_state (4, x)=-v;

14 elseif dir(1,1)==1 && ord(cl)==

15 direction(2,1)=-1;

16 direction(1,1)=0;

17 target_state (2, x)=0;

18 target_state (4, x)=-v;

19 elseif dir(l,1)== -1 && ord(cl)==
20 direction(2,1)=1;

21 direction(1l,1)=0;

22 target_state (2,x)=0;

23 target_state (4, x)=v;

24 elseif dir(2,1)==1 && ord(cl)==2

25 direction(1l,1)=-1;

26 direction(2,1)=0;

27 target_state (2, x)=-v;

28 target_state (4, x)=0;

29 elseif dir(2,1)==-1 && ord(cl)==
30 direction(1l,1)=1;

31 direction(2,1)=0;

32 target_state (2, x)=v;

33 target_state (4, x)=0;

34 elseif dir(2,1)== 1 && ord(cl)==3
35 direction(1l,1)=1;

36 direction(2,1)=0;

37 target_state (2, x)=v;

38 target_state (4, x)=0;

39 elseif dir(2,1)==-1 && ord(cl)==3
40 direction(1,1)=-1;

41 direction(2,1)=0;

42 target_state (2, x)=-v;

43 target_state (4, x)=0;

44 end

45 c=cl+1;

Listing A.4: MATLAB code of maneuver.m

1 function [y, x]=maneuver (F,order,c, Turning_left, Turning_right, target_state, xin)
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2 y=target_state;

3 if order(c)==1 %straight on

4 x=xin+1;

5 y(l:4,x)=Fxtarget_state(l:4,x-1);

6 % target_state (5,x)=path(c);

7 elseif order(c)==2 %$turn left

8 x=xin+1;

9 y(l:4,x)= Turning_leftx target_state(l:4,x-1);
10

11 else %turn right

12 x=xin+1;

13 y(l:4,x)= Turning.right* target_state(l:4,x-1);
14 end

15 yv=y(1l:4,x);

Listing A.5: MATLAB code of controlTurnRight.m

1 function [true, false,dir,targetState,xl]=controlTurnRight (direction,v, ...
2 cr,T_target,target_state, x,distFromAnchors)

3 targetState=target_state;

4 dir=direction;

5 true=0;

6 false=1;

7 x1=x;

8 v=v*1000/3600;

9 %This function tells if the target is located at the border of the
10 %crs to avoid that the target follows its turn right.

11 %true=1: If the target is located at the borders

12 %$false=0:If the target is inside the cr

13

14 1if (direction(l,1)==1 && direction(2,1)==0 &&

15 ((target_state (3,x)==cr(2,2)) |]...

16 ((cr(2,2)<target_state(3,x)) && (target_state(3,x)<cr(2,2)+1))))
17 x1=x+1;

18 targetState(l:4,x1)=[cr(l,1)+distFromAnchors;0; ...

19 target_state (3,x)-v*T_target;-v];

20 true=1;

21 false=0;

22 elseif (direction(l,1)==-1 && direction(2,1)==0 &&

23 ((target.state(3,x)==cr(2,1)) |]|...

24 ((cr(2,1)-1<target_state(3,x)) && (target_state(3,x)<cr(2,1)))))
25 x1=x+1;

26 targetState(l:4,x1)=[cr(l,2)-distFromAnchors;0;cr(2,1)+v+T_target;v];
27 true=1;

28 false=0;

29 elseif (direction(l,1)==0 && direction(2,1)==1 &&...
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30

31

32

33

34

35

36

37

38

39

40

41

42

43

((target_state (1,x)==cr(1,2)) ||...

((cr(l,2)-1<target_state(l,x)) && (target_state(l,x)<cr(1,2)))))
x1=x+1;
targetState(l:4,x1)=[cr(l,2)+v+xT_target;0;cr(2,2)+distFromAnchors;-v];
true=1;

false=0;

elseif (direction(1l,1)==0 && direction(2,1)==-1 &&

end

((target_state(l,x)==cr(1,1)) |]...

((cr(l,1l)<target_state(l,x)) && (target_state(l,x)<cr(l,1)+1))))
x1=x+1;
targetState(l:4,x1)=[cr(l,1)-vxT_target;0;cr(2,1)-distFromAnchors;-v];
true=1;

false=0;
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Appendix B

Matlab GUI Code

This appendix deals to show the involved code to create the tracking simulator. The set of files

"*.m” are the following:

e TrackingApp.m: This is the Matlab GUI tracking application.

o TrackinglMMKFandEKF.m: This code implemments the simulator, that is, when user
click over the button run that appears in the application. This function calls all the

tracking estimators.

e Multilateration.m: This code performs multilateration with those four active anchor nodes
with maximum received power or with those anchors located at the crossing borders. If the
option weighted average is specified in the application, instead of doing multilateration,

the weighted average method is used.

o weightedAverage.m: This code generates the coefficients used in the weighted average

method to calculate the target position.

e posfun.m: It is the cost function C(z,y) appeared in 2.9. This cost function is the eu-
clidean distance from the target to each of the anchors. The function fminunc from matlab

optimization toolbox finds the values (z,y) that minimize C(z,y).
o Kalman.m: It implements the Kalman Filter.

e genKalmancoefskf.m: This code computes the kalman coefficients from the state covari-
ance, measurement covariance, transition matrix, observation matrix, sampling time and

acceleration noise variance.

e ExtendedKalman.m: It implements the Extended Kalman Filter

123
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e genKalmancoefsekf.m: This code computes the kalman coefficients from the state covari-

ance, measurement covariance, transition matrix, observation matrix, sampling time and

acceleration noise variance.

e chooseTransitionMatrix.m: This function choose the transition matrix depending on the

target behaviour (if it is turning on or it is going straight on).

e immct: This code implements the IMM estimator.It requires the functions Kalman.m,

ExtendedKalman.m and chooseTransitionMatrix.m.

Listing B.1: MATLAB code of TrackingApp.m

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

function varargout = TrackingApp (varargin)

o0 oo o°

o\

o0 o o° oo oo o°

o

o0 o oo oo oe

o

o

oe

o

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename,

TRACKINGAPP M-file for TrackingApp.fig

See also: GUIDE, GUIDATA, GUIHANDLES

Edit the above text to modify the response to help TrackingApp

Last Modified by GUIDE v2.5 09-Jul-2010 11:16:45

Begin initialization code - DO NOT EDIT

TRACKINGAPP, by itself, creates a new TRACKINGAPP or raises the existing

singletonx.

H = TRACKINGAPP returns the handle to a new TRACKINGAPP or the handle to

the existing singletonx.

TRACKINGAPP ('CALLBACK', hObject,eventData, handles, ...) calls the local
function named CALLBACK in TRACKINGAPP.M with the given input arguments.

TRACKINGAPP ('Property', 'Value',...) creates a new TRACKINGAPP or raises thg
existing singletonx. Starting from the left, property value pairs are
applied to the GUI before TrackingApp-OpeningFcn gets called. An

unrecognized property name or invalid value makes property application

stop. All inputs are passed to TrackingApp-OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

instance to run (singleton)".

'gui_Singleton', gui_Singleton,
'gui_OpeningFcn', @TrackingApp-OpeningFcn,
'gui_OutputFcn', @TrackingApp_-OutputFcn,

'gui_LayoutFcn', 1,
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35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

'gui_Callback', [1);
if nargin && ischar (varargin{l})
gui_State.gui_Callback = str2func(varargin{l});

end

if nargout
[varargout{l:nargout}] = guimainfcn(gui_State, varargin{:});
else
guimainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
muProb=[];
% —-—— Executes just before TrackingApp is made visible.

function TrackingApp-OpeningFcn (hObject, eventdata, handles, varargin)

o°

This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to TrackingApp (see VARARGIN)

)

% Choose default command line output for TrackingApp
cla (handles.axesl, 'reset');

(

set (handles.edit23, 'String', '");

set (handles.edit24, 'String', '");

set (handles.edit25, 'String','")

set (handles.edit26, 'String', '");
(
(
(
(
(

set (handles.edit23, 'enable', "off"'
handles.edit24, "enable', 'off"’
handles.edit25, "enable', 'off"
handles.edit26, '"enable', 'off’
set (handles.Multilateration, 'Value',1);
set (handles.radiobuttonl, 'Value',0);

handles.output = hObject;

set
set

set

set (handles.pushbutton2, 'enable', 'off");
set (hObject, 'toolbar', "figure');

o

% Update handles structure

guidata (hObject, handles);

\o

¥ UIWAIT makes TrackingApp wait for user response (see UIRESUME)

o\

uiwait (handles.figurel);

et STREET PARAMETERS—————————————————————————————
Anchors_Street = 24; SNumber of total Anchors (12 per side)
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82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

121

122

123

124

125

126

127

128

distAnch = 4; %distance between anchors

WidthStreet=20;

start_x = 2; %this would be the distance from the reference where
$the parking lots begin

lengthStreet = 2xstart_x +distAnchx ((Anchors_Street/2)-1);

o SCENARIO AREA ————————————m o

block_horiz = 4; S%total of horiz "block"
block_vert = 3; S%total of vert "block"

g DEFINE THE POSITIONS OF THE ANCHORS —————————————————

AnchPos=AnchorsPosDefinition (Anchors_Street,block_vert,block_horiz, ...
lengthStreet,distAnch,WidthStreet, start_x);

axes (handles.axesl);
plot (AnchPos (1,1:1length (AnchPos)),AnchPos (2,1:1length (AnchPos)), 'x', ...
'markersize',5);

set (handles.axesl, 'XLim', [0 4xlengthStreet+3+xWidthStreet]);

set (handles.axesl, 'YLim', [0 3xlengthStreet+2+xWidthStreet]);

xlabel ('distance in m');

ylabel ('distance in m');
video=0;

% ——— Outputs from this function are returned to the command line.
function varargout = TrackingApp-OutputFcn (hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

o

Get default command line output from handles structure

varargout{l} = handles.output;

% ——— Executes during object deletion, before destroying properties.
function figurel DeleteFcn (hObject, eventdata, handles)
hObject handle to figurel (see GCBO)

oe

o

eventdata reserved - to be defined in a future version of MATLAB

o

handles structure with handles and user data (see GUIDATA)

function Archivo_Callback (hObject, eventdata, handles)

% hObject handle to Archivo (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Appendiz B
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129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

function Instructions_Callback (hObject, eventdata, handles)

% hObject handle to Instructions (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

open Instructions.fig

function editl_Callback (hObject, eventdata, handles)
hObject handle to editl (see GCBO)

oe

o

> eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o

o°

Hints: get (hObject, 'String') returns contents of editl as text

% str2double (get (hObject, 'String')) returns contents of editl as a double

sigma_-shad=str2double (get (handles.editl, 'string'));

if isnan(sigma-shad)
errordlg ('You must enter a numeric value to Sigma_shad', 'Bad Input', 'modal')
set (handles.editl, 'String',2);

end

% ——— Executes during object creation, after setting all properties.

function editl_CreateFcn (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

o°

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

function edit2_Callback (hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit2 as text

o°

str2double (get (hObject, 'String')) returns contents of edit2 as a double

std.ml=str2double (get (handles.edit2, 'string'));
if isnan(std.ml)
errordlg('You must enter a numeric value to ML Standard Deviation', ...
'Bad Input', 'modal')
set (handles.edit2, 'String', 3);
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176
177 end
178 % —-—-— Executes during object creation, after setting all properties.

179 function edit2_CreateFcn (hObject, eventdata, handles)

180 % hObject handle to edit2 (see GCBO)

181 % eventdata reserved - to be defined in a future version of MATLAB

182 % handles empty — handles not created until after all CreateFcns called
183

184 % Hint: edit controls usually have a white background on Windows.

o\

185 See ISPC and COMPUTER.

186 1f ispc && isequal (get (hObject, 'BackgroundColor'), ...

187 get (0, 'defaultUicontrolBackgroundColor'))
188 set (hObject, 'BackgroundColor', 'white'");
189 end

190

191 function edit3_Callback (hObject, eventdata, handles)

192 % hObject handle to edit2 (see GCBO)

193 % eventdata reserved - to be defined in a future version of MATLAB

194 % handles structure with handles and user data (see GUIDATA)

195

196 % Hints: get (hObject, 'String') returns contents of edit2 as text

197 % str2double (get (hObject, 'String')) returns contents of edit2 as a double
198

199 T_motes=str2double (get (handles.edit3, "'string'));

200 1f isnan(T_motes)

201 errordlg('You must enter a numeric value to Sensor Activation',...
202 'Bad Input', 'modal')

203 set (handles.edit3, 'String',0.5);

204

205 end

206

207 % ——— Executes during object creation, after setting all properties.

208 function edit3_CreateFcn (hObject, eventdata, handles)

209 % hObject handle to edit2 (see GCBO)

210 % eventdata reserved - to be defined in a future version of MATLAB

211 % handles empty - handles not created until after all CreateFcns called

212

oe

213 Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

o

214

215 1if ispc && isequal (get (hObject, 'BackgroundColor'), ...

216 get (0, 'defaultUicontrolBackgroundColor"'))
217 set (hObject, 'BackgroundColor', 'white');
218 end

219
220 function edit4_Callback (hObject, eventdata, handles)
hObject handle to edit4 (see GCBO)

o\

221

o\

222 eventdata reserved - to be defined in a future version of MATLAB
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223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

260

261

262

263

264

265

266

267

268

269

o

handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit4 as text

o°

str2double (get (hObject, 'String')) returns contents of edit4 as a double

pathloss=str2double (get (handles.edit4, 'string'));
if isnan(pathloss)
errordlg ('You must enter a numeric value to path loss exponent',...
'Bad Input', 'modal')
set (handles.edit4, 'String',2);

end

o

% ——— Executes during object creation, after setting all properties.

function edit4_CreateFcn (hObject, eventdata, handles)

% hObject handle to edit4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'), ...

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

end

function edit5_Callback (hObject, eventdata, handles)
hObject handle to edit5 (see GCBO)

o°

% eventdata reserved - to be defined in a future version of MATLAB

o°

handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of edit5 as text
% str2double (get (hObject, 'String')) returns contents of edit5 as a double

PO=str2double (get (handles.editb, 'string'));
if isnan (PO)
errordlg ('You must enter a numeric value to PO', ...
'Bad Input', 'modal')
set (handles.edit5, 'String',-63.2);

end

% —-—-— Executes during object creation, after setting all properties.
function edit5.CreateFcn (hObject, eventdata, handles)

hObject handle to editb (see GCBO)

o\

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called
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270

o)

271 % Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

o

272

273 1if ispc && isequal (get (hObject, 'BackgroundColor'), ...

274 get (0, 'defaultUicontrolBackgroundColor"'))
275 set (hObject, 'BackgroundColor', 'white');

276 end

277

278 function edité6_Callback (hObject, eventdata, handles)

279 % hObject handle to edit2 (see GCBO)

280 % eventdata reserved - to be defined in a future version of MATLAB
281 % handles structure with handles and user data (see GUIDATA)

282

o

283 Hints: get (hObject, 'String') returns contents of edit2 as text

o

284
285
286 sigma_kf=str2double (get (handles.edit6, 'string'));

287 1if isnan(sigma-kf)

288 errordlg('You must enter a numeric value to KF_sigma', ...

289 'Bad Input', 'modal')

290 set (handles.edit6, 'String',0.1);

291

292 end

293

294 % ——— Executes during object creation, after setting all properties.

295 function edit6_CreateFcn (hObject, eventdata, handles)
296 % hObject handle to edit2 (see GCBO)

297 % eventdata reserved - to be defined in a future version of MATLAB

o

298 handles empty - handles not created until after all CreateFcns called

299

o

300 Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

o

301

302 1if ispc && isequal (get (hObject, 'BackgroundColor'), ...

303 get (0, 'defaultUicontrolBackgroundColor'))
304 set (hObject, 'BackgroundColor', 'white'");

305 end

306

307 function edit7_Callback (hObject, eventdata, handles)
hObject handle to edit7 (see GCBO)

o

308

o

309 eventdata reserved - to be defined in a future version of MATLAB

o

310 handles structure with handles and user data (see GUIDATA)

311

o

312 Hints: get (hObject, 'String') returns contents of edit7 as text

o

313
314
315 sigma_ekfl=str2double (get (handles.edit7, 'string'));

316 1f isnan(sigma_ekfl)

str2double (get (hObject, 'String')) returns contents of edit2 as a double

str2double (get (hObject, 'String')) returns contents of edit7 as a double
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317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

errordlg('You must enter a numeric value to EKF_sigmal', ...
'Bad Input', 'modal')
set (handles.edit7, 'String',0.5);

end

o

°

-—— Executes during object creation, after setting all properties.

function edit7_CreateFcn (hObject, eventdata, handles)

o\

o

°

oe

o

o

hObject handle to edit7 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'), ...

get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

function edit8_Callback (hObject, eventdata, handles)

o\

s
S

o\

o
°

o
°

hObject handle to edit4 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

Hints: get (hObject, 'String') returns contents of edit4 as text
str2double (get (hObject, 'String')) returns contents of edit4 as a double

sigma_ekf2=str2double (get (handles.edit8, 'string'));

if isnan(sigma-ekf2)

errordlg('You must enter a numeric value to EKF_sigma2', ...
'Bad Input', 'modal')
set (handles.edit8, 'String',0.2);

end

S
S

——— Executes during object creation, after setting all properties.

function edit8_CreateFcn (hObject, eventdata, handles)

o
°
o
°

S
°

o°

o°

hObject handle to edit4 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB

handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'), ...

get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end
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364 function edit9_Callback (hObject, eventdata, handles)

365 % hObject handle to edit4 (see GCBO)

366 % eventdata reserved - to be defined in a future version of MATLAB
367 % handles structure with handles and user data (see GUIDATA)

368

o

369 Hints: get (hObject, 'String') returns contents of edit4d as text

o\

370
371
372 pll=str2double (get (handles.edit9, "'string'));
373 1f isnan(pll)

374 errordlg('Enter a numeric value to (1,1) of the transition matrix', ...
375 'Bad Input', 'modal')

376 set (handles.edit9, 'String',0.95);

377

378 end

379 % ——— Executes during object creation, after setting all properties.

380 function edit9_CreateFcn (hObject, eventdata, handles)

381 % hObject handle to edit4 (see GCBO)

382 % eventdata reserved - to be defined in a future version of MATLABR

383 % handles empty — handles not created until after all CreateFcns called
384

385 % Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

o\

386

387 1f ispc && isequal (get (hObject, 'BackgroundColor'), ...

388 get (0, 'defaultUicontrolBackgroundColor'))
389 set (hObject, 'BackgroundColor', 'white'");
390 end

391
392

393 function editlO_Callback (hObject, eventdata, handles)

394 % hObject handle to editl0 (see GCBO)

395 % eventdata reserved - to be defined in a future version of MATLAB

396 % handles structure with handles and user data (see GUIDATA)

397

398 % Hints: get (hObject, 'String') returns contents of editl0 as text

399 % str2double (get (hObject, 'String')) returns contents of editl0 as a double
400

401 pl2=str2double (get (handles.editl10, 'string'));

402 1if isnan(pl2)

403 errordlg ('Enter a numeric value to (1,2) of the transition matrix',...
404 'Bad Input', 'modal')

405 set (handles.editl10, 'String',0.05);

406

407 end

408 % ——— Executes during object creation, after setting all properties.

409 function editlO0_CreateFcn (hObject, eventdata, handles)
410 % hObject handle to editl0 (see GCBO)

str2double (get (hObject, 'String')) returns contents of edit4 as a double
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411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

\o

> eventdata reserved - to be defined in a future version of MATLAB

o°

handles empty - handles not created until after all CreateFcns called

o°

Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

o\

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

function editll_Callback (hObject, eventdata, handles)
hObject handle to edit5 (see GCBO)

o

o

> eventdata reserved - to be defined in a future version of MATLAB

o°

handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit5 as text
% str2double (get (hObject, 'String')) returns contents of edit5 as a double
p2l=str2double (get (handles.editll, 'string'));
if isnan(p21)
errordlg ('Enter numeric value to (2,1) of the transition matrix', ...
'Bad Input', 'modal')
set (handles.editll, 'String',0.10);

end

% ——— Executes during object creation, after setting all properties.
function editll_CreateFcn (hObject, eventdata, handles)

hObject handle to edit5 (see GCBO)

o°

% eventdata reserved - to be defined in a future version of MATLAB

o°

handles empty — handles not created until after all CreateFcns called

o\

Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

o\

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'"))
set (hObject, 'BackgroundColor', 'white');

end

function editl2_Callback (hObject, eventdata, handles)
hObject handle to edit5 (see GCBO)

o°

\o

t eventdata reserved - to be defined in a future version of MATLAB

handles structure with handles and user data (see GUIDATA)

o°

o\

Hints: get (hObject, 'String') returns contents of edit5 as text

% str2double (get (hObject, 'String')) returns contents of edit5 as a double
p22=str2double (get (handles.editl2, 'string'));

if isnan(p22)
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458 errordlg ('Enter a numeric value to (2,2) of the transition matrix',...
459 'Bad Input', 'modal')

460 set (handles.editl2, 'String',0.90);

461

462 end

463

464 % ——— Executes during object creation, after setting all properties.

465 function editl2_CreateFcn (hObject, eventdata, handles)

466 % hObject handle to edit5 (see GCBO)

467 % eventdata reserved - to be defined in a future version of MATLAB

468 % handles empty - handles not created until after all CreateFcns called
469

470 % Hint: edit controls usually have a white background on Windows.

o

471 See ISPC and COMPUTER.

472 1f ispc && isequal (get (hObject, 'BackgroundColor'), ...

473 get (0, 'defaultUicontrolBackgroundColor'))
474 set (hObject, 'BackgroundColor', 'white');

475 end

476

477 function editl3_Callback (hObject, eventdata, handles)

478 % hObject handle to editl2 (see GCBO)

479 % eventdata reserved - to be defined in a future version of MATLAB

480 % handles structure with handles and user data (see GUIDATA)

481

482 % Hints: get (hObject, 'String') returns contents of editl2 as text

483 % str2double (get (hObject, 'String')) returns contents of editl2 as a double
484

485 mu_-ijll=str2double (get (handles.editl3, 'string'));

486 1f isnan(mu-ijll)

487 errordlg ('Enter a numeric value to (1,1) of the Model Probabilities', ...
488 'Bad Input', 'modal')

489 set (handles.editl13, 'String',0.5);

490

491 end

492 $ ——— Executes during object creation, after setting all properties.

493 function editl3_CreateFcn (hObject, eventdata, handles)

494 % hObject handle to editl2 (see GCBO)

495 % eventdata reserved - to be defined in a future version of MATLAB

496 % handles empty - handles not created until after all CreateFcns called
497

o

498 Hint: edit controls usually have a white background on Windows.

See ISPC and COMPUTER.

o

499

500 if ispc && isequal (get (hObject, 'BackgroundColor'), ...

501 get (0, 'defaultUicontrolBackgroundColor"'))
502 set (hObject, 'BackgroundColor', 'white');
503 end

504




APPENDIX B. MATLAB GUI CODE 135

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

function editl4_Callback (hObject, eventdata, handles)
hObject handle to editl3 (see GCBO)

o°

\o

t eventdata reserved - to be defined in a future version of MATLAB

o°

handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of editl3 as text
% str2double (get (hObject, 'String')) returns contents of editl3 as a double
mu_ijl2=str2double (get (handles.editl4, 'string'));
if isnan(mu-ijl2)
errordlg ('Enter a numeric value to (1,2) of the Model Probabilities', ...
'Bad Input', 'modal')
set (handles.editl14, 'String',0.5);

end

o

% —-—-— Executes during object creation, after setting all properties.

function editl4_CreateFcn (hObject, eventdata, handles)

% hObject handle to editl3 (see GCBRO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

oe

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

function editl5_Callback (hObject, eventdata, handles)

% hObject handle to editl5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of editlb5 as text
% str2double (get (hObject, 'String')) returns contents of editl5 as a double
Ttarget=str2double (get (handles.editl5, 'string'));
if isnan(Ttarget)
errordlg ('You must enter a numeric value to Target sampling', ...
'Bad Input', 'modal')
set (handles.editl5, 'String',0.5);

end

% —-—-— Executes during object creation, after setting all properties.
function editl5.CreateFcn (hObject, eventdata, handles)

% hObject handle to editl5 (see GCRO)

o

% eventdata reserved - to be defined in a future version of MATLAB
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552 % handles empty - handles not created until after all CreateFcns called
553

554 % Hint: edit controls usually have a white background on Windows.
555 % See ISPC and COMPUTER.

556 1f ispc && isequal (get (hObject, 'BackgroundColor'), ...

557 get (0, 'defaultUicontrolBackgroundColor"'))

558 set (hObject, 'BackgroundColor', 'white');

559 end

560

561 % ——— Executes on button press in Multilateration.

562 function Multilateration_Callback (hObject, eventdata, handles)

563 % hObject handle to Multilateration (see GCBO)

564 % eventdata reserved - to be defined in a future version of MATLAB
565 % handles structure with handles and user data (see GUIDATA)

566 1f (get (handles.Multilateration, 'Value')==1)

567 set (handles.WeightedAv, 'enable', 'off'");

568 set (handles.WeightedAv, 'Value',0);

569 set (handles.textl7, 'String', 'RMS Multilateration');

570 else

571 set (handles.WeightedAv, 'enable', 'on'");

572 set (handles.WeightedAv, 'Value',1);

573 set (handles.textl7, 'String', 'RMS Weighted Average');

574 end

575 % Hint: get (hObject, 'Value') returns toggle state of Multilateration
576

577

578 % ——— Executes on button press in WeightedAv.

579 function WeightedAv_Callback (hObject, eventdata, handles)

580 % hObject handle to WeightedAv (see GCBO)

581 % eventdata reserved - to be defined in a future version of MATLAB
582 % handles structure with handles and user data (see GUIDATA)

583 1if (get (handles.WeightedAv, 'Value')==1)

584 set (handles.Multilateration, 'enable', 'off'");

585 set (handles.Multilateration, '"Value',0);

586 set (handles.textl7, 'String', 'RMS Weighted Average');

587 else

588 set (handles.Multilateration, 'enable', 'on');

589 set (handles.Multilateration, 'Value',1);

590 set (handles.textl7, 'String', 'RMS Multilateration');

591

592 end

593 % Hint: get (hObject, 'Value') returns toggle state of WeightedAv

594

595 % ——— Executes on button press in pushbuttonl.

506 function pushbuttonl_Callback (hObject, eventdata, handles)

597 % hObject handle to pushbuttonl (see GCBO)

598 % eventdata reserved - to be defined in a future version of MATLAB
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% handles structure with handles and user data (see GUIDATA)
set (handles.pushbutton2, 'enable', 'off'");

set (handles.edit23, "enable', "on'

( ’
( )i
set (handles.edit24, 'enable', 'on');
( )
( )

set (handles.edit25, '"enable', 'on');

set (handles.edit26, 'enable', 'on');
sigma_shadl=str2double (get (handles.editl, 'string'));
std.ml=str2double (get (handles.edit2, 'string'));
T_motes=str2double (get (handles.edit3, "string'));
Ttarget=str2double (get (handles.editl5, 'string'));
Groups=get (handles.popupmenu2, 'value');
pathloss=str2double (get (handles.edit4, 'string'));
PO=str2double (get (handles.edit5, 'string'));
route=get (handles.popupmenu3, 'value');
sigma_kf=str2double (get (handles.edit6, 'string'));
sigma_ekfl=str2double (get (handles.edit7, 'string'));
sigma_ekf2=str2double (get (handles.edit8, 'string'));
pll=str2double (get (handles.edit9, 'string'));
pl2=str2double (get (handles.editl10, 'string'));
p2l=str2double (get (handles.editll, 'string'));
p22=str2double (get (handles.editl2, 'string'))
mu_ijll=str2double (get (handles.editl3, 'string'));
mu_-ijl2=str2double (get (handles.editl4, 'string'));

pathloss_dist=str2double (get (handles.edit27, 'string'));

’

pij=[pll pl2;p2l p22];

muij=[mu-ijll mu-ijl2];

$while get (handles.pushbuttonl, 'UserData')==1;
cla (handles.axesl, "reset');

guidata (hObject, handles);

if (get (handles.Multilateration, 'Value')==1)
Multilat=1;
else
Multilat=0;
end
if get (handles.radiobuttonl, 'Value')==1
video=1;
else
video=0;

end

[mu, finish]=TrackingIMMKFandEKF (sigma_shadl, std.ml, T_-motes, Ttarget, ...
Groups,pathloss,pathloss_dist, PO, route,sigma_kf,sigma_ekfl, ...
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646 sigma_ekf2,pij,muij,Multilat, video, hObject, eventdata, handles);
647 handles.muProb=mu;

648 1f finish ==

649 set (handles.pushbutton2, 'enable', 'on');

650 end

651 Send

652 guidata (hObject, handles);

653

654 % ——— Executes on selection change in popupmenuz2.

655 function popupmenu2_Callback (hObject, eventdata, handles)

656 % hObject handle to popupmenu2 (see GCBO)

657 % eventdata reserved - to be defined in a future version of MATLAB

658 % handles structure with handles and user data (see GUIDATA)

659

660 % Hints: contents = get (hObject, 'String') returns popupmenu?2 contents as
661 %cell array. contents{get (hObject, 'Value')} returns selected item

662 %Sfrom popupmenu?2

663 1f get (handles.popupmenu?2, 'value')==

664 set (handles.edit3, 'String',5);

665 set (handles.edit3, 'enable', "off"');

666 else

667 set (handles.edit3, 'String', '0.5");

668 set (handles.edit3, 'enable', 'on');

669 end

670

671 % ——— Executes during object creation, after setting all properties.

672 function popupmenu2_CreateFcn (hObject, eventdata, handles)

673 % hObject handle to popupmenu2 (see GCBO)

674 % eventdata reserved - to be defined in a future version of MATLAB

675 % handles empty - handles not created until after all CreateFcns called
676

677 % Hint: popupmenu controls usually have a white background on Windows.
678 % See ISPC and COMPUTER.

679 1f ispc && isequal (get (hObject, 'BackgroundColor'), ...

680 get (0, 'defaultUicontrolBackgroundColor'))

681 set (hObject, 'BackgroundColor', 'white'");

682 end

683

684 % ——— Executes on selection change in popupmenu3.

685 function popupmenu3_Callback (hObject, eventdata, handles)

686 % hObject handle to popupmenu3 (see GCBO)

687 % eventdata reserved - to be defined in a future version of MATLAB

688 % handles structure with handles and user data (see GUIDATA)

689

690 % Hints: contents = get (hObject, 'String') returns popupmenul contents as
691 % cell array. contents{get (hObject, 'Value')} returns selected item from popupmenuj

692
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% ——— Executes during object creation, after setting all properties.

function popupmenu3_CreateFcn (hObject, eventdata, handles)

% hObject handle to popupmenu3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

o\

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor"))
set (hObject, 'BackgroundColor', 'white');

end

o

% —-—-— Executes on button press in pushbutton2.

function pushbutton2_Callback (hObject, eventdata, handles)

% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

modeProb () ;

function edit23_Callback (hObject, eventdata, handles)
% hObject handle to edit23 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

o°

Hints: get (hObject, 'String') returns contents of edit23 as text

o°

str2double (get (hObject, 'String')) returns contents of edit23 as a double

% ——-— Executes during object creation, after setting all properties.
function edit23_CreateFcn (hObject, eventdata, handles)
% hObject handle to edit23 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

o°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

o°

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

function edit24_Callback (hObject, eventdata, handles)
% hObject handle to edit24 (see GCBO)
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740 % eventdata reserved - to be defined in a future version of MATLAB

741 % handles structure with handles and user data (see GUIDATA)

742

743 % Hints: get (hObject, 'String') returns contents of edit24 as text

744 % str2double (get (hObject, 'String')) returns contents of edit24 as a double
745

746

747 % ——— Executes during object creation, after setting all properties.

748 function edit24 _CreateFcn (hObject, eventdata, handles)

749 % hObject handle to edit24 (see GCBO)

750 % eventdata reserved - to be defined in a future version of MATLAB

751 % handles empty - handles not created until after all CreateFcns called

752

753 % Hint: edit controls usually have a white background on Windows.

754 % See ISPC and COMPUTER.

755

756

757
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764
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775
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786

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');

end

function edit25_Callback (hObject, eventdata, handles)

% hObject handle to edit25 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit25 as text

% str2double (get (hObject, 'String')) returns contents of edit25 as a double
% ——— Executes during object creation, after setting all properties.

function edit25.CreateFcn (hObject, eventdata, handles)

% hObject handle to edit25 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles empty — handles not created until after all CreateFcns called

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

o°

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white'");

end

function edit26-Callback (hObject, eventdata, handles)

% hObject handle to edit26 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of edit26 as text
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o

str2double (get (hObject, 'String')) returns contents of edit26 as a double

o

% —-—-— Executes during object creation, after setting all properties.

function edit26_CreateFcn (hObject, eventdata, handles)

% hObject handle to edit26 (see GCBRO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

oe

if ispc && isequal (get (hObject, 'BackgroundColor'), ...
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

end

o

% —-—-— Executes when figurel is resized.

function figurel_ResizeFcn (hObject, eventdata, handles)

% hObject handle to figurel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% ——— Executes on button press in radiobuttonl.

function radiobuttonl_Callback (hObject, eventdata, handles)

% hObject handle to radiobuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

o\

Hint: get (hObject, 'Value') returns toggle state of radiobuttonl

function edit27_Callback (hObject, eventdata, handles)

% hObject handle to edit27 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit27 as text
% str2double (get (hObject, 'String')) returns contents of edit27 as a double
pathloss_dist=str2double (get (handles.edit27, 'string'));
if isnan(pathloss_dist)
errordlg('You must enter a numeric value to path loss exponent', ...
'Bad Input', 'modal')
set (handles.edit27, 'String', 3);
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834 end
835
836 % ——— Executes during object creation, after setting all properties.
837 function edit27_CreateFcn (hObject, eventdata, handles)
838 % hObject handle to edit27 (see GCBO)
839 % eventdata reserved - to be defined in a future version of MATLAB
840 % handles empty - handles not created until after all CreateFcns called
841
842 % Hint: edit controls usually have a white background on Windows.
843 % See ISPC and COMPUTER.
844 1f ispc && isequal (get (hObject, 'BackgroundColor'), ...
845 get (0, 'defaultUicontrolBackgroundColor'))
846 set (hObject, 'BackgroundColor', 'white'");
847 end
Listing B.2: MATLAB code of TrackingIMMKFandEKF.m
1 function [MU, finish] = Tracking_ IMM_KF_and_EKF (sigma_shadl, std-ML, ...
2 Tmotes, Ttarget, Groups, pathloss,pathloss_dist,P_0, route, sigma_kf, ...
3 sigma_ekfl, sigma_ekf2,pij,muij,Multilat, video,hObject, eventdata, handles)
4
5 S Tracking simulator ———————---""""----—-—-————
6 S General scenario—————————————————————————
7 %In this simulator we track a car using multilateration technique, that is
8 %moving between different streets in a urban area.
9
10 %The scenario is a set of streets of 20m of width, 4m between anchor nodes
11 %(x) and 12 parking slots per side
12
13 & o
14
15 S e STREET PARAMETERS——————""""""""""""———————————
16 Anchors_Street = 24; %Number of total Anchors (12 per side)
17 distAnch = 4; %distance between anchors
18 WidthStreet=20;
19 start_x = 2; %this would be the distance from the reference where
20 %the parking lots begin
21 lengthStreet = 2+start_x +distAnch«* ((Anchors_Street/2)-1);
22 T
23
24 S SCENARIO AREA ———————————————————————————————————
25 block_horiz = 4; %total of horiz "block"
26 block_vert = 3; S%total of vert "block"
27 cr=(block_horiz-1)*(block_vert-1); S%number of croisses
28 streets=cr; $Number of streets

29

Scenario Width = block_horizxlengthStreet+WidthStreetx (block_horiz-1);
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30 Scenario_Height = block_vertxlengthStreet+WidthStreet* (block_vert-1);

Bl T
32

383 F——— ANCHORS PARAMETERS—————————————————————————————
34 Ngroups=Groups; %number of groups of activated intercalated Anchors

35

36 % S DEFINE THE POSITIONS OF THE ANCHORS —————————————————
37 % %We associate the set of anchors of one street to a number that identifies
38 % %this street.

39 %

40 AnchPos=AnchorsPosDefinition (Anchors_Street,block_vert,block_horiz, ...

41 lengthStreet,distAnch, WidthStreet, start_x);
42
43 G DEFINE THE CROSSINGS IN MATRICES--———————————————————

44 %As we have 6 crs in a 4x3 blocks:

45 crl=[lengthStreet lengthStreet+WidthStreet; ...

46 2% (lengthStreet+WidthStreet) 2+lengthStreet+WidthStreet];

47 cr2=[2xlengthStreet+WidthStreet 2« (lengthStreet+WidthStreet); ...
48 2% (lengthStreet+WidthStreet) 2xlengthStreet+WidthStreet];

49 cr3=[3xlengthStreet+2+«WidthStreet 3x (lengthStreet+WidthStreet); ...
50 2% (lengthStreet+WidthStreet) 2xlengthStreet+WidthStreet];

51

52 crd4=[lengthStreet lengthStreet+WidthStreet; ...

53 lengthStreet+WidthStreet lengthStreet];

54 cr5=[2+lengthStreet+WidthStreet 2% (lengthStreet+WidthStreet); ...
55 lengthStreet+WidthStreet lengthStreet];

56 cr6=[3xlengthStreet+2xWidthStreet 3 (lengthStreet+WidthStreet);...
57 lengthStreet+WidthStreet lengthStreet];

58

59 G- TARGET PARAMETERS————--—-—"—-—-——-—————————————————

60 %$Now let's start assuming that a mobile node M travels along a certain path
61 %Swith constant velocity. The following parameters are required:
62 switch route

63 case 1

64 load 'routel_target_route'

65 case 2

66 load 'route2 target_route'

67 case 3

68 load 'route3_target_route'

69 case 4

70 load 'routed_target_route'

71 case 5

72 load 'routebS_target_route'

73 case 6

74 load 'routeb6b_target_route'

75 end

76
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%$The target route is previously computed with a sampling period of
$T_target=0.01. Then some samples are taken from all the route:
T=Ttarget;

Target_samples=T/0.01;

T_motes=Tmotes; %$sampling time in seconds of the active motes.

$Every T_motes sg, all active anchors send a message to the target.
T_shift = T_motes/Ngroups; $%$Time shift between the first and second group
%of a total of Ngroups

s=(0:Ngroups-1)*T_shift; %This vector contains all the shifts between
%$the groupl and the other anchors groups

s=roundn (s, -1);

anchors ML = 4; %number of considered anchors for multilateration computation
e PATH LOSS MODEL PARAMETERS———————————————————————
sigma-shad = sigma_shadl; %shadow fading variance in dB as the power of

$the noise added to the received power
PO = P_0; %Received power at 1 m used for the received power model in dBm
gamma=pathloss;

gamma-dist=pathloss_dist;

G KALMAN PARAMETERS AND COEFFICIENTS-—————————————————
stdml=std_-ML; %standard deviation in m due to the multilateration computation
varml=std.ml"2;
models=2;
V=cell (1,models); %covariance of the white-gaussian acceleration noise
%of the state model
sigma_a=sigma_kf; %acceleration variance in velocity for KF
sigma_al=sigma_ekfl; %acceleration variance in velocity for EKF
sigma_a2=sigma-al; %acceleration variance in turn rate for EKF
sigma_a3=sigma_ekf2;
v{l}=diag([sigma.a, sigma-al);
v{2}=diag([sigma.al, sigma_a2, sigma_a3]l);
R=[varml 0;0 var_ml]; $measurement noise covariance matrix
x_jk=cell (1,models);%$This cell used in the IMM algorithm contains
%$the state vectors of both KF and EKF which are updated in each time step
%$using the IMM
P_jk=cell (1,models);%This cell used in the IMM algorithm contains
%$the state covariance matrices for both KF and EKF which are updated in each time
%$using the IMM
P_jk{l}=[var.ml var.ml/T_shift 0 0; var.ml/T_shift 2xvar.ml/T_shift 2
0 0; 0 0 var.ml varml/T_.shift; 0 0 var.ml/T_shift 2*var_.ml/T_shift”2];
P_jk{2}=[var.ml var.ml/T_shift 0 0 0; var.ml/T_shift 2xvar.ml/T_shift"2
0 0 0; 00 var.ml varml/T_shift 0; 0 0 var.ml/T_shift
2«var.ml/T_shift”2 0;0 0 0 0 0.017;
%$Below the initial state covariance matrix for the KF

P KF=P_jk{1l};

step
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124 %Below the initial state covariance matrix for the EKF

125 P_EKF=P_jk{2};

126 H=cell (1,models);

127 H{1}=[1 0 0 0;0 0 1 01;

128 H{2}=[1 00 0 0;0 0 1 0 0];

129 mu-ij=muij;

130 p-1ij=pij;

131 F=cell (1,models);

132 F{1}=[1 T_shift 0 0;0 1 0 0;0 0 1 T_shift ;0 0 0 1]; %KF transition matrix
133 norm_ML=[];

134 norm_KF=[];

135 norm_EKF=[];

136 norm_IMM=][];

137 T
138

139 ml=1l; %$Target estimated samples

140 count=0;

141 n=1;
142
143 S$———————————— PARAMETERS FOR GENERATING THE MOVIE —————-—

144 1if (video==1)

145 fps=3;
146 fn = strcat ('Tmotes_',num2str (T_motes), 'sg_.',num2str (Ngroups), ...
147 'group_route',num2str (route), 'Sigma_shad',num2str (sigma_shad)', 'dB.mov");

148 MakeQTMovie ('start', fn);

149 MakeQTMovie ('quality', 1);

150 end

151

152

153 S e BEGIN THE TRACKING ———————————"————————————————
154

155 for x=l:Target_samples:length(target_state)

156 %$Now all the received powers of all the anchors are gathered by the
157 %target. We use the simple path loss model:

158 %Pr (dBm)=P0 (dBm) -10-gamma-logl0O (d-i), where d_i is the euclidean
159 %distance from the mobile target to anchor i

160

161 %Below we check if the target is inside a cr

162

163 if ((crl(l,l)<target_state(l,x) && target_state(l,x)<crl(l,2)) &&

164 (crl(2,2)<target_state(3,x) && target_state(3,x)<crl(2,1)) H
165 (cr2(l,1)<target_state(l,x) && target_state(l,x)<cr2(1l,2)) &&
166 (cr2(2,2)<target_state(3,x) && target_state(3,x)<cr2(2,1)) [
167 (cr3(1l,1)<target_state(l,x) && target_state(l,x)<cr3(1l,2)) &&

168 (cr3(2,2)<target_state(3,x) && target_state(3,x)<cr3(2,1)) [
169 (crd4(l,1)<target_state(l,x) && target_state(l,x)<cr4d(l,2)) &&
170 (crd (2,2)<target_state(3,x) && target_state(3,x)<crd4(2,1)) [
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215

216

217

(cr5(1,1)<target_state(l,x) && target_state(l,x)<cr5(1,2)) &&
(cr5(2,2)<target_state(3,x) && target_state(3,x)<cr5(2,1)) |\
(cr6(l,1)<target_state(l,x) && target_state(l,x)<cr6(l,2)) &&
(cr6(2,2)<target_state(3,x) && target_state(3,x)<cr6(2,1)))

%$Next we need to check wether in which cr is located the target

77777777777777777 if the target is cr the cr 1 —————————————
if ((crl(l,l)<target_state(l,x)) && (target_state(l,x)<crl(l,2)) &&
(crl(2,2)<target_state(3,x)) && (target_state(3,x)<crl(2,1)))

a=find (abs (s—-count)<1/1000);

if (length(a)>0) %when count has a value of one of the activation times
%0of the different set of Anchors
Pos_Anchors=[crl(1l,1)-start_x crl(l,2)+start_x crl(l,1)-start_x
crl(l,2)+start_x; crl(2,1) crl(2,1) crl(2,2)
crl(2,2)1;

[estimated_pos_-target (:,ml),ActiveAnch]= Multilateration(target_state(:,x), ...

Pos_Anchors,AnchPos,P0, gamma, gamma_dist, sigma_shad, anchors. ML, ...
Anchors_Street, 1, a,Ngroups,distAnch,Multilat);

activated=1;

else

activated=0;

end

end

—————————————————————— if the target is cr the cr 2—-—————-
if ((cr2(l,1l)<target_state(l,x) && target_state(l,x)<cr2(1l,2)) &&
(cr2(2,2)<target_state(3,x) && target_state(3,x)<cr2(2,1)))

a=find (abs (s—count)<1/1000) ;

if (length(a)>0) %when count has a value of one of the activation times
%0f the different set of Anchors
Pos_Anchors=[cr2(1,1)-start_x cr2(l,2)+start_x cr2(1l,1)-start_x
cr2(l,2)+start_x; cr2(2,1) cr2(2,1) cr2(2,2)
cr2(2,2)1;

[estimated_pos_target (:,ml),ActiveAnch]= Multilateration(target_state(:,x), ...

Pos_Anchors,AnchPos,P0, gamma, gamma_-dist, sigma_shad, anchors_ML, ...
Anchors_Street, 1, a,Ngroups,distAnch, Multilat);
activated=1;
else
activated=0;
end

end
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219

220

221

222

223

224

225

226

227

228
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240
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244

245

246

247

248

249

250

251

252

258

259

260

261

262

263

264

<)

et if the target is cr the cr 3-————————-

if ((cr3(l,1l)<target_state(l,x) && target_state(l,x)<cr3(1l,2)) &&
(cr3(2,2)<target_state(3,x) && target_state(3,x)<cr3(2,1)))
a=find (abs (s—count)<1/1000) ;

if (length(a)>0) %$when count has a value of one of the activation times
%0f the different set of Anchors

Pos_Anchors=[cr3(1l,1)-start_x cr3(l,2)+start_x cr3(l,1l)-start_x

cr3(1l,2)+start_x; cr3(2,1) cr3(2,1) cr3(2,2)

cr3(2,2)1;

[estimated_pos_target (:,ml),ActiveAnch]= Multilateration(target_state(:,x), ...
Pos_Anchors,AnchPos, P0, gamma, gamma_-dist, sigma_shad, anchors_ML, ...
Anchors_Street,1,a,Ngroups,distAnch,Multilat);

activated=1;

else

activated=0;

end

end

e if the target is cr the cr 4————

if ((cr4(l,1l)<target_state(l,x) && target_state(l,x)<cr4(l,2)) &&
(crd4(2,2)<target_state(3,x) && target_state(3,x)<cr4(2,1)))
a=find (abs (s—count)<1/1000);

if (length(a)>0) %$when count has a value of one of the activation times
%$of the different set of Anchors
Pos_Anchors=[cr4d4(1l,1)-start_x crd4(l,2)+start_x crd4(l,1)-start_x
crd(l,2)+start_x; crd(2,1) crd(2,1) crd(2,2)
crd (2,2)1;

[estimated_-pos_target (:,ml),ActiveAnch]= Multilateration(target_state(:,x),. .

Pos_Anchors, AnchPos,P0,gamma,gamma_dist, sigma_shad, anchors ML, ...
Anchors_Street, 1, a,Ngroups,distAnch,Multilat);
activated=1;
else
activated=0;
end
end
G if the target is cr the cr 5-————-———-
if ((cr5(1l,1)<target_state(l,x) && target_state(l,x)<cr5(1,2)) &&
(cr5(2,2)<target_state(3,x) && target_state(3,x)<cr5(2,1)))
a=find(abs (s—-count)<1/1000);

if (length(a)>0) %when count has a value of one of the activation times
%of the different set of Anchors

Pos_Anchors=[cr5(1l,1)-start_x cr5(1,2)+start_x cr5(1l,1)-start_x
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265 cr5(1,2)+start_x; cr5(2,1) cr5(2,1) cr5(2,2)

266 cr5(2,2)1;

267

268 [estimated.-pos_target (:,ml),ActiveAnch]= Multilateration(target_state(:,x), ..
269 Pos_Anchors,AnchPos, P00, gamma, gamma-dist, sigma_-shad, anchors_ML, ...
270 Anchors_Street, 1, a,Ngroups,distAnch,Multilat);

271 activated=1;

272 else

273 activated=0;

274 end

275 end

276 S if the target is cr the cr 6————

277

278 if ((cr6(l,1l)<target_state(l,x) && target_state(l,x)<cr6(l,2)) &&

279 (cr6(2,2)<target_state(3,x) && target_state(3,x)<cr6(2,1)))

280

281 a=find (abs (s—count)<1/1000) ;

282

283 if (length(a)>0) %when count has a value of one of the activation times
284 $0f the different set of Anchors

285 Pos_Anchors=[cr6(1l,1)-start_x cr6(l,2)+start_x cr6(l,1l)-start_x

286 cr6(l,2)+start_x; cr6(2,1) cr6(2,1) cr6(2,2)

287 cr6(2,2)1;

288

289 [estimated_pos_target (:,ml),ActiveAnch]= Multilateration(target_state(:,x), ..
290 Pos_Anchors,AnchPos, P00, gamma, gamma_-dist, sigma_shad, anchors_ML, ...
291 Anchors_Street, 1, a,Ngroups,distAnch,Multilat);

292 activated=1;

293 else

294 activated=0;

295 end

296 end

297

298 else %$If the target is not in a cr

299

300 G PERFORMING MULTILATERATION IN THE STREETS———————————-—
301 a=find (abs (s—-count)<1/1000);

302

303 if (length(a)>0) %when count has a value of one of the activation times
304 %0of the different set of Anchors

305 [estimated.-pos_target (:,ml),ActiveAnch]= Multilateration(target_state(:,x),...
306 AnchPos, AnchPos, P00, gamma, gamma_-dist, sigma_shad, anchorsML, ...

307 Anchors_Street, 0, a,Ngroups,distAnch,Multilat) ;

308 activated=1;

309

310 else

311 activated=0;
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358

end

end

if size(estimated_pos_-target,2)==1
$KF, EKF and IMM initializations to the first measurement
KF_estimates=zeros (4,1);
EKF_estimates=zeros (5,1);
KF_estimates ([1 3], :)=estimated_pos_target;
EKF_estimates ([l 3], :)=estimated_pos_target;
x_jk{1l}=KF_estimates;
x_jk{2}=EKF_estimates;
x_combupdl (:,1)=EKF_estimates;
MU(:,1)=mu_-i7j;
norm_ML (ml)=norm([target_state (1l,x);target_state(3,x)]-...
[estimated_pos_target (1,1);estimated_pos_-target (2,1)]);
norm_KF (ml)=norm([target_state(l,x);target_state(3,x)]-...
[ KF_estimates (1,1);KF_estimates (3,1)]);
norm_EKF (ml)=norm([target_state (1,x);target_state(3,x)]1—-...
[EKF_estimates (1,1) ;EKF_estimates(3,1)1);
norm_IMM (ml)=norm([target_state (l,x);target_state(3,x)]—...
[x_combupdl (1,1);x_combupdl (3,1)1);

end

if activated==
if ml>2

g APPLY KALMAN FILTER-————————————————

[x_updKF, P_.updKF, x_predKF,P_predKF]=. ..
Kalman (KF_estimates (:,ml-1),P.KF,F{1},H{1},V{1},R, ...
estimated_-pos_-target (:,ml),T_shift);
P_KF=P_updKF;
KF_estimates (:,ml)=x_updKF;

G APPLY EXTENDED KALMAN FILTER-————————————————————————

A = chooseTransitionMatrix (EKF_estimates (:,ml-1),T_shift);
F{2}=A;
[x_updEKF, P_.updEKF, x_predEKF, P_predEKF]=. ..

ExtendedKalman (EKF_estimates (:,ml-1),P_EKF,F{2},H8{2},Vv{2},R, ...

estimated._pos_target (:,ml),T_shift);
P_EKF=P_updEKF;
EKF_estimates (:,ml)=x_updEKF;

e APPLY INTERACTIVE MULTIPLE MODEL-CT-—————————————————

A = chooseTransitionMatrix (x-jk{2}, T_shift);
F{2}=n;
[x_combupd, P_.combupd, x_.combpred, P_.combpred, x_jkl,P_jkl,mu_ijkl]=

immct (mu_-ij,p-ij,x-jk,P_jk,F,H,V,R,estimated_pos_target (:,ml), T_shift);
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359 mu-ij=mu_ijkl;

360 x_jk=x_jk1;

361 P_jk=P_jk1;

362 x_combupdl (:,ml)=x_combupd;

363 MU (:,ml)=mu_-ij;

364 e PLOTTING RESULTS —-———————————————————————————
365 axes (handles.axesl);

366 hl=plot (AnchPos (1,1:1length (AnchPos)), ...

367 AnchPos (2, 1:1length (AnchPos)), 'x', 'markersize',5);

368 hold on

369 set (handles.axesl, 'XLim', [0 4xlengthStreet+3xWidthStreet]);

370 set (handles.axesl, 'YLim', [0 3xlengthStreet+2xWidthStreet]);

371 xlabel ('distance in m'");

372 ylabel ('distance in m');

373 h2=plot (target_state(l,x),target_state(3,x),"' "', ...

374 'Color', [47;79;79]1/255, 'markersize',b5);

375 h3=plot (ActiveAnch (1l,1:length (ActiveAnch)),ActiveAnch (2, ...

376 l:length (ActiveAnch)), 'x', "Color', [9;249;17]/255, 'markersize',5);

377 h4=plot ( estimated-pos_-target (l,ml), estimated-pos_-target (2,ml), ...

378 '.r', 'markersize',20);

379 %$'Color',[192;192;192]1/255);

380 h5=plot (KF_estimates(l,1:ml), KF_estimates(3,1:ml),'k', 'Linewidth',2);
381 hé=plot (EKF_estimates(l,1:ml), EKF_estimates (3,1:ml), ...

382 'Color', [208;32;144]/255, 'LineWidth',2);%[255;130;171]/255);

383 h7=plot (x_combupdl (1,1:ml), x_combupdl (3,1:ml), 'Color', ...

384 [85;26;139]1/255, 'LineWidth',2);%[153;102;204]1/255);

385 legend([hl h2 h3 h4 h5 h6 h7], 'Parking Nodes', 'True track', ...

386 'Active Nodes', 'measurements', 'KF', 'EKF','IMM-CT', 'Location', 'Best');
387 MakeQTMovie ('addplot');

388 norm-ML (ml)=norm_ML (ml-1)+norm([target_state(l,x);target_state(3,x)]-...
389 [estimated_pos_target (1,ml);estimated_-pos_-target (2,ml)]);

390 norm-KF (ml)=norm_KF (ml-1)+norm([target_state (l,x);target_state(3,x)]1-

391 [KF_estimates (1,ml); KF_estimates (3,ml)]);

392 norm_EKF (ml)=norm_EKF (ml-1)+norm([target_state(l,x);target_state(3,x)]—...
393 [EKF_estimates (1,ml) ; EKF_estimates (3,ml)]);

394 norm_IMM (ml)=norm_IMM (ml-1)+norm([target_state(l,x);target_state(3,x)]—-...
395 [x_combupdl (1,ml) ; x_combupdl (3,ml)]);

396 set (handles.edit23, 'String',num2str (norm_-ML (ml) /ml));

397 set (handles.edit24, 'String',num2str (norm_KF (ml) /ml));

398 set (handles.edit25, 'String', num2str (norm_EKF (ml) /ml)) ;

399 set (handles.edit26, 'String',num2str (norm_IMM (ml) /ml)) ;

400

401 end

402 if a==length(s)

403 s=s+T_motes;

404 s=roundn (s) ;

405

end
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406 ml=ml+1;
407 elseif activated==
408 axes (handles.axesl);
409 plot (AnchPos (1,1:1length (AnchPos)),AnchPos (2,1:1length (AnchPos)), ...
410 'x', 'markersize',5);
411 hold on
412 set (handles.axesl, 'XLim', [0 4xlengthStreet+3xWidthStreet])
413 set (handles.axesl, 'YLim', [0 3xlengthStreet+2«WidthStreet]);
414 plot (target_state(1,x),target_state(3,x), """, 'Color', [47;79;79]1/255, ...
415 'markersize',5);
416 if (video==1)
417 MakeQTMovie ('addplot');
418 end
419 end
420 count=count+T;
421 count=roundn (count) ;
422 n=n+1;
423 end
424
425 MakeQTMovie ('framerate', fps);
426 MakeQTMovie ('finish');
427 finish = 1;
428 RMS_ML=norm_ML/sqgrt (ml) ;
429 RMS_KF=norm_KF/sqgrt (ml) ;
430 RMS_EKF=norm_EKF/sqrt (ml) ;
431 RMS_IMM=norm_IMM/sqrt (ml) ;

Listing B.3: MATLAB code of Multilateration.m
1 S Performing Multilateration technique out of the crossings-——————————-

2 function [estimated_pos,AllActive]=Multilateration(target_state,AnchorPos, ...

3 AllAnchors,P0,gamma, gamma_-dist, sigma_shad, anchors_ML, Anchors_Street, ...
4 incrossing, Ngroup, Ngroups, distAnch,Multilat)

5

6 1f incrossing ==1 %If the target is in a crossing, compute multilateration
7 $with those anchor nodes located at the both sides in x.

9 target=[target_state(l);target_state(3)];
10 %$Next we choose the four neares active anchors of horizontal sides

11 AnchPos= [AnchorPos(1l,1) - (distAnchx* (Ngroups—-Ngroup)) ...

(
12 AnchorPos (1, 2)+(distAnch* (Ngroup—-1)) ...
13 AnchorPos (1, 3) - (distAnch«* (Ngroup-1)) ...
14 AnchorPos (1, 4)+ (distAnch* (Ngroups—-Ngroup)); . . -
15 AnchorPos (2,1) AnchorPos (2,2) AnchorPos (2,3) AnchorPos(2,4)];

16

17 dist = sqrt((target(l,1)-AnchPos(1l,:)). 2+ (target(2,1)—- AnchPos(2,:))."2);
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18 Pr=P0- (1l0*xgamma*loglO (dist) ) +sqgrt (sigma_-shad) *randn(l, length(dist));
19

20 1f Multilat==

21 %Variable d.rssi is the estimated distance from RSSI to each of the

22 %anchors considered to compute multilateration

23 d-rssi= 10." ((PO0-Pr(l,:))/ (10xgamma_-dist));
24 estimated._pos = fminunc (@ (pos_target_est) posfun(pos_target_est, ...
25 AnchPos,d.rssi), [0;0]);

26 elseif Multilat==

27 $SWEIGHTED AVERAGE METHOD FOR POSITIONING INSTEAD OF MULTILATERATION.

28 %$IN PRACTICE WEIGHTED AVERAGE IS BETTER (PRECIS) THAN MULTILATERATIO

29 weightedCoeffs = weightedAverage (Pr); %It is a Nxl1 vector (N=anchors.ml)
30 estimated_pos= [AnchPos (1, :);AnchPos (2, :)]*weightedCoeffs;

31 end

32

33 elseif incrossing==0 %$If the target is in a certain street

34

35 target=[target_state(l);target_state(3)1];

36 Anchors_id=find (AnchorPos (3, :)==target_state(5));

37 PosAnch=AnchorPos (:,Anchors_id) ;

38 %$The following switch defines a matrix with triangle geometry of the
39 %$Active Anchors Positions

40 switch Ngroup

41 case 1

42 c=[Ngroup:2xNgroups:length (PosAnch) 2xNgroups:2xNgroups:length (PosAnch)];

43 c=sort (c);

44 SubPosAnch=PosAnch(:,c);

45 otherwise

46 c=[2xNgroup-1l:2xNgroups:length (PosAnch) 2xNgroup-2:2xNgroups:length (PosAnch)];
47 c=sort (c);

48 SubPosAnch=PosAnch(:,c);

49 end
50
51 dist = sqrt((target(l,1l)-SubPosAnch(l,:)). 2+ (target (2,1)-SubPosAnch(2,:))."2);

52 Pr=P0-(l0xgammaxloglO (dist))+sqgrt (sigma_shad) *randn(l, length(dist));
53
54 %$We associate in a matrix P an ID to each anchor node and to the

55 %$corresponding received power from that anchor node

56 P = zeros(2,length(Pr));
57 P(l,:) = Pr;
58 P(2,:) = SubPosAnch(3,:);

59

60 %$Now it is going to compute multilateration with those anchors_ML
61 %$specified with the highest received power:

62

63 Pr_max=zeros (2,anchors_ML); %first row contains

64 cont_up=0;
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65 cont_down=0;
66 A=P;

67 for kk=l:anchors_ML

68 if (cont_down < round(anchors_ML/2))

69 [i,J]=max (A (1, :));

70 Pr_max (1,kk)=1;

71 Pr_max (2,kk)=7;

72 A(1l,3)=-200;

73 cont_down=cont_down+1;

74 elseif (cont_up < Anchors_Street-round(anchors ML/2)) &&
75 (cont_down > round(anchors_ML/2))

76 if target_state(4) <0 || target.state(2)<0
77 if mod (Ngroup, 2)==

78 [a,b]=max (A (1l,2:2:1ength(A)));
79 b=2+b;

80 elseif mod (Ngroup,2)==0

81 [a,b]l=max (A(1l,1:2:1length(A)));
82 b=2xb-1;

83 end

84 else

85 if mod (Ngroup, 2)==0

86 [a,b]l=max (A(1l,2:2:1length(A)));

87 b=2xb;

88 elseif mod(Ngroup,2)==1

89 [a,b]=max (A(1l,1:2:1length(A)));

90 b=2+b-1;

91 end

92 end

93 Pr_max (1,kk)=a;

94 Pr_max (2, kk)=b;

95 A(l,b)=-200;

96 cont_up=cont_up+1l;

97 end

98 end

99
100 if Multilat==
101 d.rssi= 10." ((PO-Pr_max(1l,:))/ (10xgamma_dist));

102 $————-Below multilateration is solved optimizated without constraints —-——-
103 estimated._pos = fminunc (@ (pos_-target_est) posfun(pos_-target_est, ...

104 SubPosAnch (:,Prmax(2,:)),d.rssi), [0;0]);

105 elseif Multilat== SWEIGHTED AVERAGE METHOD

106 SubPosAnch=SubPosAnch(:,Pr_max (2,:));

107 weightedCoeffs = weightedAverage (Prmax(l,:)); %It is a Nxl vector (N=anchors.ml)

108 estimated_pos= [SubPosAnch(l, :);SubPosAnch (2, :)]*weightedCoeffs;
109
110 end

111 end
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112

113

114

115

116

117

118

119

120

121

122

switch Ngroup
case 1
c=[Ngroup:2+«Ngroups:length (AllAnchors) 2xNgroups:2+«Ngroups:length (AllAnchors)];
c=sort (c);
AllActive=AllAnchors(:,c);
otherwise
c=[2+«Ngroup-1:2xNgroups:length (AllAnchors) 2xNgroup-2:2xNgroups:length (AllAnchors)
c=sort (c);
AllActive=AllAnchors(:,c);

end

Listing B.4: MATLAB code of weightedAverage.m

10

11

12

13

14

15

16

17

18

$Weighted Average Received power:

%$This scripts returns coefficients as the weighted received power defined
%as follows:

% alfan = Rssi.n/sum(Rssi(1:N)) where n is in a range between 1 to N and
%N is the number of considered anchors to perform the positioning.

%$Rssi is a 1xN vector containing the received powers of all the N anchors.

function weighted.coeffs = weightedAverage (Rssi)
alfas = zeros(l,length(Rssi));
Rssi_sum = sum(Rssi);

for m=1:1length(alfas)
alfas (m)= Rssi(m)/Rssi_sum;

end

weighted_coeffs=alfas"';

Listing B.5: MATLAB code of posfun.m

10

function F=pos_fun (vec_pos,pos.anclas,medida)

o

pos-anclas es la matriz donde cada columna son las componentes x e y de

o

los anclas;

o\

medida es un vector donde cada fila es la medida tomada por cada ancla;

F=0;

for kk=l:size(pos.anclas, 2)
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11

12 F = F + (sgrt((pos-anclas(l,kk)-vec_pos(l)) "2+ (pos.anclas (2,kk)—-...
13 vec._pos (2)) "2)-medida (kk)) "2;

14

15

16 end

Listing B.6: MATLAB code of Kalman.m

1 function [x_updKF,P_updKF, x_predKF,P_predKF,likelihoodKF]=...
2 Kalman(x_.0j,P_03,F¥,H,V,R,2z,T)

4 [k_kf,S,P_predKF,P_updKF]=genKalmancoefskf(R,P_.0j,F,H,T,V);
5 %generate online the Kalman coefficient, the state covariance matrices

6 S%prediction and the update for each received measurement z.

8 x_.predKF=Fxx_07;

9 error_kf=z-Hxx_predKF;

10 %correction=k_kf (:,:,x)*error_kf;

11 correction=k_kfxerror_kf;

12 x_updKF=correction+Fxx_07;

13 if nargout >4

14 likelihoodKF=(1/((2xpi) "0.5xdet (S) " 0.5)) ...

15 exp (=0.5x (z—x_predKF ([1 3],:)) "*inv(S)* (z-x_predKF ([1 3],:)));

16 end

Listing B.7: MATLAB code of genKalmancoefskf.m

1 function [k,S,P_pred,P_upd] = gen_Kalman_coefs kf(R,P,F,H,T,V)

3 tau=[(1/2)*T"2 0;T 0;0 (1/2)*T"2;0 T]; %——> This suppose to be the

4 Sknown matrix. It takes into account certain variations in the velocity,
5 %in practice the velocity never is constant. In the signal model it would
6 %be related to the acceleration vector with the following vector state

7 %Smodel:

8 %$x(k+1)=Fx(k)+tau*a, where a is a 2x1 white gaussian acceleration noise

9 S%vector, contempling the small changes in velocity in x and in y.

10 %$x 1s a vector of dimensions 4x1 having both the position and velocity in
11 %both dimensions, x and vy.

12 %F 1is the known transition matrix

13 %The following is the covariance matrix of the state equation, or the also
14 %known as process noise covariance matrix

15 Q = tauxVsxtau';

oe

16 k = zeros(4,2,N);

17
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18 %for n=1:N

19 P_pred=F+P«F'+Q; %Predicted State covariance
20 S=HxP_pred+H'+R; %Residual covariance

21 $k(:, :,n)=PxH'"*inv (S) ;

22 k=P_pred+H'xinv (S);

23 P_upd=P_pred-kx*Sxk'; %Updated State covariance

24 %end

Listing B.8: MATLAB code of ExtendedKalman.m

1 function [x_updEKF,P_updEKF, x predEKF,P predEKF,likelihoodEKF]=...
2 ExtendedKalman(x_.03j,P_.03,F,H,V,R,z,T)

4 [k_ekf,S,P_predEKF,P_updEKF]=genKalmancoefsekf (R,x.03,P_.03,H,T,V);
5 %generate offline the Kalman coefficients and state covariance matrices

6 %prediction and updates

8 x_predEKF=F*x_07;

9 error_ekf=z-Hxx_predEKF;

10 %correction=k_ekf (:,:,x)*error_ekf;

11 correction=k_ekf*error_ekf;

12 x_updEKF=correction+Fxx_07;

13

14 1f nargout>4

15 likelihoodEKF=(1/((2*pi) ~0.5xdet (S) "0.5))*...

16 exp (0.5« (z—x_predEKF ([1 3],:)) "*inv(S) x (z-x_predEKF ([1 3],:)));

17 end

Listing B.9: MATLAB code of genKalmancoefsekf.m

1 function [k, S,P_pred,P_upd] = gen_Kalman_coefs_ekf(R,x,P,H,T,V)

3 %The kalman coefficients are 4xl1 which corresponds to Kx,Kv._x,Ky,Kv_y

4 %If we compute them off-line before kalman

5 %operation we will have a matrix with dimensions 4xN.

6 %C: Covariance 2x2 matrix of the observation white gaussian noise

7 %T: sampling time:

8 5%N: number of kalman set of coeficients, one set for each kalman iteration
9 %sigma-a: variation in the velocity. We assume that between the (k ? 1)th
10 %and kth timestep the truck undergoes a constant acceleration of ak that
11 %is normally distributed, with mean 0 and standard deviation ?a

12
13

14

15 tau=[(1/2)*T"2 0 0;T 0 0;0 (1/2)*T"2 0;0 T 0;0 O T]; %-—> This suppose to be the
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16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

%$known matrix. It take into account certain variations in the velocity,
%in practice the velocity never is constant. In the signal model it would
%be related to the acceleration vector with the following vector state

$model:

$x (k+1)=Fx (k) +tauxa, where a is a 2x1 vector, taking into account the
$small acceleration values in x and in y ——> a= [a_-x;a.y] that makes small
$variations in velocity. x 1s a vector of dimensions 4x1 having both the
$position and velocity in both dimensions, x and y.

$A 1s the transition matrix

%$Initial covariance matrix of the state equation
Q = tauxVxtau';

w=x(5,1);

if abs(w) < 10°-12

df=[1 T 0 0 —(1/2)*T"2xx(4);...
0100 -T*«x(4);...
001 T (1/2)*xT"2*x(2); ...
0001 T*«x(2);...
00

00 1]1;
else
coswt = cos(wxT);
coswto = l-cos (wxT);
coswtopw = —coswto/w;
sinwt = sin(w*T );
sinwtpw = sinwt/w;

f_omegal=((coswt*Txx(2))/w)—((sinwt*x(2))/w"2)—...
(sinwtxT*xx (4)) /w—((—1l+coswt) *xx(4))/w"2;

f_omegal=- (sinwt*Txx (2)) - (coswt*Txx (4));

f_omega3=(sinwt*T*x(2)) /w—((l-coswt) *x(2))/w 2+...

(coswt*T*x (4)) /w- (sinwt*x (4))/w’2;
f_omegad=(coswt*T*x(2)) - (sinwt*«T*x(4));
df=[1 sinwtpw 0 coswtopw f_omegal ;...
coswt 0 -sinwt f_omegal2;...

0
0 -coswtopw 1 sinwtpw f_omegal3;...
0 sinwt 0 coswt f_omegai;

0

o 0 0 11,

end

$df is the jacobian matrix of the coordinated turn model
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63 P_pred=df«Pxdf'+Q; %$state prediction covariance
64 S=HxP_pred+H'+R; %Residual covariance, or innovation covariance
65 k=P_pred*H'xinv(S); %Filter gain

66 P_upd=P_pred-kxSxk';%Update state covariance

Listing B.10: MATLAB code of immct.m

1 function [x_combupd,P_combupd,x_combpred, P_.combpred, x_jkl1,P_jk1, ...

2 mu-ijkl, x_updKF, x_updEKF , x_predKF, x_predEKF]=. ..

3 imm_-ct (mu-ij,p-ij,x-jk,P_jk,¥,H,V,R, 2z, T)

4 %Interactive Multiple Model Estimator for the coordinated turn model

5 % (IMM-CT)

6 %We have two models or filters:

7 %Kalman filter with a process noise covariance V_KF stored in the cell V{1}
8 %and

9 %measurement noise covariance stored in the cell R{1}.

10 % Extended Kalman Filter with a process noise covariance V_EKF stored in
11 % V{2}and measurement noise covariance stored in the cell R{2}.

12 %$The inputs in the algorithm IMM at time step k are:

13 % - the r state vector and r state covariance matrix of previous time
14 % step. r is the number of filters. These are x_jk and P_jk as a cell
15 % array.

16 % — the prior model probabilities for each model. It is a vector

17 % with dimensions 1xr.

18 % — The models transition probabilities p-ij which reflect the transition
19 % probabilities of a Markov Chain. It has the dimensions rxr.

20 % — The same inputs than the filters: Transitions matrices, process

21 % noise covariance, measurement noise covariance, all of them are

22 % cell arrays with dimensions 1lxr.

23

24 %$The outputs of the algorithm at time step k are:

25 % - The updated combined state vector and state covariance: x_combupd
26 % and P_combupd

27 % - the updated state and covariance for each model: x_jkl and P_jkl.
28 % That is, the updated state vector and state covariance computed by
29 % each of the different filters. Again they are organized in 1xr cell
30 % array.

31 % - the updated model probabilities: mu-ijkl at next time step

32 % - Also if it is needed, the combined predicted state vector and

33 % state covariance: x_combpred and P_combpred

34

35 %$We are going to work with 1xr cell arrays, where cell 1xl we can stored
36 S$whatever we want (vectors or matrices with any dimension).

37

38 %$The IMM can be divided in three parts:

o

39 % - Interaction/mixing: It computes the mixing probabilities from the
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40 % model probabilities, and the mixed initial condition for the filter
41 % matched.

42 % - Filters Prediction and Update (mode matched-filtering)

43 % — Mode probability update and mixing probability calculation

4 % - State estimate and covariance combination

45

46 nmodels = size(mu_.ij,2);

47 dim KF=4; %the state vector for the KF is 4 (x,Vvx,y,Vy)

48 dim_EKF=5; S%$the state vector for the KF is 5 (x,vx,y,vy,w)

49 G INTERACTION/MIXING—————————————————————————————
50 % Normalizing factors for mixing probabilities

51 c.j = zeros(l,nmodels);

52 for j = l:nmodels

53 for i = l:nmodels

54 c-j(3) = c-j(3) + p-ij(i,J) .*mu-ij(i);

55 end

56 end

57 % Mixing probabilities

58 MU_1ij = zeros (nmodels,nmodels) ;

59 for i = l:nmodels

60 for j = l:nmodels

61 MU_i3(i,3) = p-i3(i,3) » muij(i) / c-j(3); %$MU_ij is the
62 %updated mixing probability from the previous model
63 %probability mu_ij

64 end

65 end

66 % Calculate the mixed state mean for each filter

67 x_0j = cell(l,nmodels);

68 x_03{1l}=zeros (dim_EKF, 1) ;

69 x_03{2}=zeros (dim_EKF, 1) ;

70 for 3 = l:nmodels

71 ind=[1 2 3 4]"';

72 for i = l:nmodels

73 x.03{3}(ind) = x.03{j}(ind) + x_jk{i}(ind)*MU_ij(i,3);
74 ind=[1 2 3 4 5]';

75 end

76 end

77

78 % Calculate the mixed state covariance for each filter

79 P_.0j = cell(l,nmodels);

80 P_0j{l}=zeros (dim_EKF, dim_EKF) ;

81 P_0j{2}=zeros (dim_EKF, dim_EKF) ;

82

83 for 3 = l:nmodels

84 ind=[1 2 3 41°';

85 for 1 = l:nmodels

86 P_09{3}(ind,ind)=P_03{4} (ind, ind)+ MU_ij (i, ) * (P_k{i} +
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87 (x-3k{i} (ind)-x-03{3} (ind)) *» (x-jk{i} (ind)-x-03{3} (ind)) ") ;

88 ind=[1 2 3 4 5]°';

89 end

90 end

91 G END INTERACTION/MIXING-———————==———— == —

92 S MODE-MATCHED FILTERING——————————— ===

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

ind=[1 2 3 41°';
[x_updKF, P_updKF, x_predKF, P_predKF,likelihood KF]=. ..
Kalman (x_-03{1} (ind),P_03{1} (ind, ind) ,F{1},H{1},V{1},R, 2z, T);
ind=[1 2 3 4 5]"';
[x_updEKF, P_updEKF, x_predEKF, P_predEKF, likelihoodEKF]=. ..
ExtendedKalman (x-0j{2} (ind),P_03j{2} (ind, ind),F{2}, H{2},V{2},R, 2, T);
$———-—Combined Prediction of the state vector and the state covariance--——--
likelihood = [likelihood_KF likelihoodEKF];
% Predicted state mean
x_combpred = [x_predKF;0]+mu_ij(l)+x_predEKF+mu_ij(2);
% Predicted state covariance
P_predKFl=zeros (dim_EKF, dim_EKF) ;
P_predKF1l (l:length(P_predKF),l:length(P_predKF))=P_predKF;
P_predKF= P_predKF1l;
P_combpred=mu_ij (1) * (P_predKF+ ([x_predKF; 0] -x_combpred) *. ..
([x-predKF; 0] -x_combpred) ") +...
mu_-i7j(2) «x (P_predEKF+ (x_predEKF-x_combpred) » (x_.predEKF-x_combpred) ") ;

c = sum(likelihood.*xc_J);
mu_-ijkl = c_j.xlikelihood/c; % Update the model probabilities
F——————— Combined Update of the state vector and the state covariance-—-—
x_jkl=cell (1, nmodels);
x-3k1{1l}= [x-updKF;0];
x-3k1{2}=x_updEKF;
P_jkl=cell (1, nmodels);
P_jk1{1}=P_updKF;
P_jk1{2}=P_updEKF;

x_combupd= zeros (dim_EKF,1);
P_combupd=zeros (dim_KF, dim_KF) ;
% Updated state mean

for j = l:nmodels

x_combupd = x_combupd + mu-ijkl (j)*x-jk1{3};

end

x_combupdl=x_combupd (1:dim_KF) ;

ind=[1 2 3 41°';

% Updated state covariance

for j = l:nmodels
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134

135

136

137

138

139

140

141

142

143

144

145

P_combupd=P_combupd+ mu_-ijkl (3)* (P_.jk1{j}+ (x-jk1{3F} (ind)-x_combupdl) . ..

o°

(x-3k1{3} (ind) -x_-combupdl) ") ;
if g==

end

end

P_combupdl=zeros (dim_EKF, dim_EKF) ;
P_combupdl (1:1length (P_combupd), l:length (P_combupd) )=P_combupd;
P_combupd=P_combupdl;
x_combupdl=x_combupd;
ind=[1 2 3 4 5]"';
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Appendix C

ARID Navigator Java Code

The ARID NAVIGATOR is developed in Java code using the Java IDE Netbeans. The set of

Java codes used for the navigator development are:

e Rssidemo.java: this is the main class. This code is able to recollect the frames coming

from the base sensor node via serial USB port. Then the received power source is read
with a tinyos function from the received packet. Then the positioning computation is done
in this code. The position computation is send to the Window class. This code is mainly
developed by Albert Bel who also have participated in the XALOC project.

Window.java: this class is the application window of the navigator having all the swing
Java objects (buttons, checkboxes, layeredpanes and so on). The purpose of this class is
basically to draw on a map the parkings icons as well as the user’s position. The map can
be downloaded from internet or loaded locally depending of the cold start and warm start
state buttons. To draw the user’s position icons and the parkings icons the jLayeredPane

class is used.

ParkingSensor.java: this class is used to create objects that store the UTM coordinates of
every parking sensor. This class has been useful to create a list of parkings, with objects

instantiated from this class in each position of the parking list.

e KalmanFilter.java: this class implements the one dimension Kalman filter.

Listing C.1: JAVA code of RssiDemo.java

1

2

3

package mymaps;

163
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4 /*

5 * "Copyright (c) 2005 The Regents of the University of California.

6 * All rights reserved.

7 *

8 * Permission to use, copy, modify, and distribute this software and

9 % its documentation for any purpose, without fee, and without written

10 * agreement is hereby granted, provided that the above copyright

11 * notice, the following two paragraphs and the author appear in all

12 * copies of this software.

13 *

14 * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY

15 * PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

16 * DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS

17 * DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN

18 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

19 x

20 * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,

21 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
23 * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
24 * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
25 *

26/

27

28/

29 * This is a modified version of TestSerial.java, from apps/tests/TestSerial
30 * from TinyOS 2.x (www.tinyos.net)

31 «/

32

33 /x%*

34 * Java-side application for testing the RSSI demo

35

36 * (@author Phil Levis <pal@cs.berkeley.edu>

37 * @author Dimas Abreu Dutra <dimas@dcc.ufmb.br>

38 * @date April 11 2008

39 x/

40

41

42 import net.tinyos.message.x;

43 1import net.tinyos.util.sx;

44 1import net.tinyos.packet.x;

45 import java.util.Arrays;

46 1mport java.io.x;

47 import javax.swing.Timer;

48 1import Jjava.awt.event.x;

49

50 public class RssiDemo implements MessageListener {
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51

52

53

54
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65
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67
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72

73
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7

78
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89
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95
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private MoteIF motelF;

public Window win;

public RssiDemo (MoteIF moteIF) {
this.motelIF = motelF;
this.motelIF.registerListener (new RssiMsg (), this);
win = new Window () ;

win.setVisible (true);

// variables de control de programa

public int num_places=18; //nodes totals

public double dist_threshold=2.000; //threshold distancia

public String string.pot ="potencia3.txt";

public String string._coop="valor_coop3.txt";

public String string.pos="coord.-projectades3.txt";

public String string-pos_klmn="coord_kalman3.txt";

public int tipus_-window=2; // 1-> lectura 2-> dBm 3->lineal

public double gammal=5;

public double gamma2=12;

public double gamma3 = 18;

public double velocidadAlta=2; // threshold de velocidad en m/s

public double velocidadBaja=0.75; // threshold de velocidad en m/s
public double gamma=0;

//public double gamma=5;//dbm o lectura Px75%—> 2.25 P*x50%—> 3 Px75%—> 6
//public double gamma=0.277;//factor de reduccio Px75%-> 0.115

//Px50%—> 0.277 P»25%—> 0.555

public int tipus_-lectura=2; // 1-> lectura directa 2->dBm 3-> watts
public int tipus_cooperacio=2; //1-> cooperants fixos 2->threshold
public int tipus_potencia=4; // 1-> lectura 2-> lectura WS 3-> dBm iris 4->dBm
//WS 5-> linial iris 6-> linial WS

public double threshold = 86; //threshold potencia

public double x_mob=0, R=25, V=3,v=(double)0x1000.0/3600.0; //R is the
// measurement noise covariance and V is the acceleration random value variance
public int num_coop=4; //numero nodes cooperants

public int delay_seconds=2500; //every 2.5 sg we perform positioning

//variables de control del programa

public double suma=0;

public double suma_-inv=0;

public int k=0, num_iterations=0;//num_iterations without position measurements
public double x[] = new double[num.-places];

public double y[] = new double[num.-places];

public double x_mobil=0.0;

public double y-mobil=0.0;

public double x0=0.0;

public double y0=0.0;
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98 public double x1=0.0;

99 public double y1=0.0;

100 public double pendent=0.0;

101 public double b=0.0;

102 public double al=0.0;

103 public double a2=1;

104 public double d.-kalman = 0.0;

105 public double step=-10.0;public int kk=0;public int cont_coop=0;
106 public double beta= 0;

107 public double posicions_usades[] = new double[num_places];

108 public double potencia[] = new double[num_places];

109 public double pow_.rx[] = new double[num_places];

110 public double distancia=0.0;

111 public float posCordinates[] = new float[2];

112 public double coord.-x[] = new double [num_places];

113 public double coord.y[] = new double [num_-places];

114 public int rx_-msg=0;

115

116 public int mesura=1l, temp=1;

117

118 public double[] updpos; //updated position and velocity in x ith kalman
119 public double y_mob=0, x_.mob_ant=0, y_.mob_ant=0, x_mob_pant=0, y_.mob_pant=0;
120 public KalmanFilter KF= new KalmanFilter();

121

122

123 public void messageReceived(int to, Message message) {

124 RssiMsg msg = (RssiMsg) message;

125 int source = message.getSerialPacket () .get_header_src();

126 if (source>l && source<l8){

127 rx_msg++;

128 switch (tipus_potencia)

129 case 1l: //lectura directa

130 potencia[source-1]= msg.get_rssi();

131 pow_rx [source-l]=msg.get_rssi();

132 break;

133 case 2: //lectura directa WS

134 potencia[source-1]= msg.get_rssi()=*3.1;

135 pow_rx [source-1l]=msg.get_rssi()*3.1;

136 break;

137 case 3: //dBm iris

138 potencial[source-1]= (msg.get_rssi()-91)«*(-1);

139 pow_rx [source-1l]=(msg.get_rssi()-91)«*(-1);

140 break;

141 case 4: //dBm WS

142 try{

143 potencia[source-1]= (msg.get_rssi()*x3.1-98)«*(-1);

144
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145

146

147
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pow_rx [source-1]=(msg.get_rssi()*3.1-98)x(-1);

//System.out.println ("source good: "+ String.valueOf (source));

// System.out.println("msg type good"+ String.valueOf (msg.AM_TYPE))|;

}catch (Exception e){
System.out.println("source: "+ String.valueOf (source));
System.out.println("msg type"+ String.valueOf (msg.AM_TYPE));
}
break;
case 5: // lineal iris
potencia[source—-1]= Math.pow (10, (((msg.get_rssi()—-91)-30)/10.0));
pow_rx [source—-1]=Math.pow (10, (((msg.get_rssi()—-91)-30)/10.0));
break;
case 6: // lineal WS

potencia[source-1]= Math.pow (10, (((msg.get_rssi()*3.1-98)-30)/10.0));

pow_rx [source-1]=Math.pow (10, (((msg.get_rssi()*3.1-98)-30)/10.0));

break;

try{
FileWriter fr = new FileWriter (string_pot,true);
PrintWriter salida=new PrintWriter (fr);
salida.println(source + " " + potencial[source-1]);

salida.close();

catch(java.io.IOException ioex) {}

}

coord._x = (double) 426064.21;
coord.y = (double)4594717.32;
coord._x = (double)426070.39;
coord.y =(double)4594724.20;
coord._x = (double) 426060.76;
coord.y = (double)4594720.39;
coord_x = (double)426066.66;
coord.y = (double)4594727.57;

coord._x double)426057.03;

( )
( )
( )
( )
( )
( )
( )
( )
( )
(double) 4594723.72;
( )
( )
( )
( )
( )
( )
( )
( )
( )

coord._x double)426062.95;
coord.y double)4594730.92;
coord_x = (double)426053.30;
coord.y = (double)4594727.05;
coord._x = (double)426059.24;
coord.y = (double)4594734.28;
coord._x = (double)426049.56;
coord.y double) 4594730.38;

[0]
(0]
(1]
(1]
(2]
[2]
[3]
[3]
(4]
coord.y[4]
[5]
[5]
[6]
[6]
(7]
(7]
(8]
[81=
coord_x[9]=(double)426055.53;
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192 coord.y[9]=(double)4594737.63;

193 coord_x[10]=(double)426045.83;

194 coord.y[10]=(double)4594733.70;

195 coord.x[11]=(double)426051.82;

196 coord.y[11]=(double)4594740.98;

197 coord_x[12]=(double)426042.10;

198 coord.y[12]=(double)4594737.03;

199 coord_x[13]=(double)426048.11;

200 coord.y[13]=(double)4594744.33;

201 coord_x[14]=(double)426038.37;

202 coord.y[14]=(double)4594740.36;

203 coord_x[15]=(double)426044.40;

204 coord.y[15]=(double)4594747.69;

205 coord.x[16]=(double)426034.63;

206 coord.y[16]=(double)4594743.68;

207 coord.x[17]=(double)426040.69;

208 coord.-y[17]=(double)4594751.04;

209 /*coord_-x[18]=(double)426030.9;

210 coord.y[18]=(double)4594747.01;

211 coord_x[19]=(double)426036.98;

212 coord_y[19]=(double)4594754.39; /

213 x1=(double) (coord.x[0]+coord.x[1])/2.0;

214 y1l=(double) (coord.y[0]+coord_y[1])/2.0;

215 x0=(double) (coord.x[1l6]+coord_x[17])/2.0;

216 y0=(double) (coord.y[l6]+coord_y[17])/2.0;

217 pendent=( (double) (yl-y0)/(x1-x0));

218 b=y0- (x0xpendent) ;

219 al=-pendent;

220 //System.out.println("pendent: "+pendent+"b: "+b+"al: "+al+"yl: "+yl);
221 distancia=Math.sqgrt ((Math.pow((x1-x0),2))+ (Math.pow((yl-y0),2)));
222 if (source>l && source<l18){

223 System.out.println("Rssi " + source + ": " + potencia[source-1]);
224 }

225

226 ActionListener temporitzador=new ActionListener ()

227 {

228 public void actionPerformed (ActionEvent evento) {
229 //System.out .println (" rx_.msg: "+rx._msqg);

230 Arrays.sort (potencia);

231 cont_coop=0;

232 int cont=0;

233 kk=0;

234 x_mobil=0;

235 y-mobil=0;

236 suma=0;

237 suma_-inv=0;

238 for (k=0;k<num_places;k++)
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240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

279

280

281

282

283

284

285

switch (tipus-lectura){
case 1: //lectura
switch (tipus_cooperacio){
case 1: //cooperants fixos
if (potencia[nuanlacesfk*1]>O){
while (pow,rx[kk]!=potencia[nuHLplacesfkfl]){
kk++;
}
x [cont_coop]=coord_x[kk];
y[cont_coopl]=coord.y [kk];
cont_coop++;
posicions_usades[kk]=1;
kk=0;
tboreak;
case 2: //power threshold
if (potencia[nuanlaces—k—l]>threshold){
while (pow,rx[kk]!=potencia[num,places—k—l]){
kk++;
}
x[cont_coop]l=coord_x[kk];
y[cont_coopl=coord._y[kk];
cont_coop++;
posicions_usades[kk]=1;
kk=0;
tbreak;
}break;
case 2: //dBm watts
if (potencialk]==0){
cont++;
}
switch (tipus,cooperacio){
case 1l: //cooperants fixos
if (potencialk]>0){
while (pow_rx[kk]!=potencialk]){
kk++;
}
x[cont_coop]=coord._x[kk];
y[cont_coop]=coord.y [kk];
cont_coop+t++;
posicions_usades[kk]=1;
kk=0;
}break;
case 2: //power threshold
if (potencialk]<threshold && potencia[k]>0){
while (pow_rx[kk]!=potencialk]){
kk++;
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286 }

287 x[cont_coop]=coord_x[kk];

288 ylcont_coop]=coord.y[kk];

289 cont_coop++;

290 posicions_usades[kk]=1;

291 kk=0;

292 }break;

293 }break;

294 case 3: //dBm watts

295 if (potencialk]==0){

296 cont++;

297 }

298 switch (tipus,cooperacio){

299 case 1: //cooperants fixos

300 if (potencialk]>0){

301 while (pow-rx[kk]!=potencialk]){
302 kk++;

303 }

304 x[cont_coopl=coord_x[kk];

305 y[cont_coop]=coord.y[kk];

306 cont_coop++;

307 posicions_usades[kk]=1;

308 kk=0;

309 }break;

310 case 2: //power threshold

311 if (potencialk]<threshold && potencia[k]>0){
312 while (pow_rx[kk]!=potencialk]) {
313 kk++;

314 }

315 x[cont_coop]=coord-x[kk];

316 ylcont_coop]=coord.y[kk];

317 cont_coop++;

318 posicions_usades[kk]=1;

319 kk=0;

320 tbreak;

321 tbreak;

322

323 }

324 }

325

326 try{

327 FileWriter ffr = new FileWriter (string.-coop,true);
328 PrintWriter sortida_-pos=new PrintWriter (ffr);

329 sortida-pos.println(posicions_usades[0]+ " " +posicions_usades[1l]+ " " +
330 posicions_usades[2]+" " +posicions_usades[3]+" " +posicions_usades[4]+
331 " " +posicions_usades[5]+" " +posicions_usades[6]+" " +

332 posicions_usades[7]+" " +posicions_usades[8]+" " +posicions_usades[9]+
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333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

"

n

+posicions_usades[10]+" " +posicions_usades[11]);
sortida_pos.close();

}

catch(java.io.IOException ioex){}

if (cont_coop==0 && rx-msg!=0)
{
switch (tipus_lectura){
case 1: //lectura

kk=0;

while (pow.rx[kk]!=potencial[numplaces-11){
Kk++;

}

x[cont_coopl]=coord._x[kk];

y[cont_coop]=coord.y[kk];

posicions_usades[kk]=1;

kk=0;

break;

case 2: //dBm

k=0;

while (potencialk]==0){
k++;

}

while (potencialk]!=pow_rx[kk]){
kk++;

}

x[cont_coop]=coord._x[kk];

y[cont_coop]=coord.y[kk];

posicions_usades[kk]=1;

kk=0;

break;

}

cont_coop=1;
if (cont_coop!=0)

//System.out.println(" cont_coop: "+cont_coop);
if (num_coop<cont_coop){

cont_coop=num_coop;

switch (tipus-lectura){
case 1: //lectura directa
for (k=0;k<cont_coop;k++){
suma=suma+potencia[num_places-k-1];
}break;
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380 case 2: //dBm watts

381 for (k:cont;k<cont+cont,coop;k++){

382 //System.out.println("k: "+k+" cont_coop: "+cont_coop);
383 suma=suma+potencialk];

384 suma_-inv=suma-inv+ (1.0/potencialk]);

385 }break;

386 case 3: //watts

387 for (k=cont;k<cont+cont,coop;k++){

388 //System.out.println("k: "+k+" cont_coop: "+cont_coop);
389 suma=sumatpotencialk];

390

391 tbreak;

392

393 }

394

395 switch (tipus_lectura){

396 case 1: //lectura directa

397 for (k=0;k<cont_coop;k++){

398 beta=((double)potencia[num.places-k-1])/ ((double)suma);
399 x_mobil=(double)x_mobil+betaxx[k];

400 y_-mobil=(double)y_mobil+betaxy[k];

401 }break;

402 case 2: //dBm watts

403 for (k=cont;k<cont+cont,coop;k++){

404 beta=( (double) suma/potencialk])/ ( (double) sumaxsuma_inv) ;
405 x_mobil=(double)x_mobil+beta*x[k-cont];

406 y-mobil=(double)y_-mobil+betaxy[k-cont];

407

108 tbreak;

409 case 3:

410 for (k=cont;k<cont+cont_coop;k++) {

411 beta=( (double)potencialk])/ ((double) suma) ;

412 x_mobil=(double)x_mobil+beta*x[k—cont];

413 y_mobil=(double)y_mobil+betaxy[k-cont];

414

415 tbreak;

416 }

417

418 x_mob= (double) (x.mobil+ (((b-(x-mobil*al)-(y-mobilx*a2))/

419 ((Math.pow(al, 2)+Math.pow(a2,2))))*al));

420 y_-mob=(double) (y-mobil+ (((b-(x-mobilxal)-(y-mobil*a2))/

421 (Math.pow (al,2)+Math.pow(a2,2)))*a2));

422 }

423

424 try

425 {

426 FileWriter fww = new FileWriter (string_pos,true);
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427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

PrintWriter sortidab=new PrintWriter (fww);
sortidab.println(x_-mob + " " + y_mob);
sortidab.close();

catch(java.io.IOException ioex){}

if(rx-msg==0){ //if there is not measurements every 2.5 sg
num_iterations++;

else{

num_iterations=0;

if (num.iterations>2){
x_mob=0;
y_-mob=0;
mesura=1;
for (k=0;k<num.places;k++){
potencialk]=0;

pow-rx[k]=0;

}

if (xmob!=0 & y_mob!=0){

d_kalman=Math.sqgrt (Math.pow ( (x_-mob-x0),2)+ (Math.pow ((y_-mob-y0),2)));

KF

if

if (x_mob<x0)

{
d_-kalman=-d_kalman;
v=-v;

}

else if (x_mob==x0)

{

if (y-mob<yO0)

d_kalman=-d_kalman;

v=-v;

if ((mesura==1) || (num.iterations>2)) {
= new KalmanFilter (d_kalman,v, (double)delay_seconds/1000.0,R);
mesura=0;

num_iterations=0;

updpos=KF.kalman (KF.KFestimates, V,R,d_kalman);
x_mob=x0+updpos [0] * (x1-x0) /distancia;
y-mob=y0+updpos [0] * (yl-y0) /distancia;

}

(Math.sqgrt (Math.pow ( (x_mob-x_mob_ant),2)+
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474 Math.pow ( (y-mob-y_-mob_ant),2))<dist_threshold)
475 {

476 x_mob_pant=x_mob_ant;

477 y-mob_pant=y_mob_ant;

478 }

479 else 1f (x_mob!=0)

480 {

481 x_mob_pant=x_mob;

482 y_-mob_pant=y_mob;

483 }

484 y-mob_ant=y_mob_pant;

485 x_mob_ant=x_mob_pant;

486

487 step++;

488

489 System.out.println("Posicion despues KF: coordenada x: " +
490 x-mob + " coordenada y: " + y-mob);
491 KF.KFestimates[0]=updpos[0];

492 KF.KFestimates[l]=updpos|[1l];

493 if ((Math.abs (updpos[1l]) >velocidadBaija) &&

494 (Math.abs (updpos[1l]) <velocidadAlta)) {
495 gamma = gammaZz;

496 }

497 else if (Math.abs (updpos[1l]) >velocidadAlta) {

498 gamma=gamma3;

499 }

500 else{

501 gamma=gammal;

502 }

503 try
504 {

505 FileWriter fww = new FileWriter (string_-pos_klmn,true);
506 PrintWriter sortidab=new PrintWriter (fww);

507 sortidab.println(x_mob_pant + " " + y_mob_pant);

508 sortidab.close();

509 }

510 catch(java.io.IOException ioex){}

511
512 try
513 {

514 if ((!'win.jButtonl.isEnabled()) && (!win.jButton3.isEnabled()))
515 {

516 win.startNavigator (x-mob_pant, y-mob_pant, pow.-rx, updpos([l]);
517
518 }

519 }catch (Exception e)

520 {
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521 System.err.println("objeto window no existe");
522 }

523 switch (tipus-window) {

524 case 1l: //lectura directa

525 for (k=0;k<num_places;k++)

526 {

527 if (pow.rx[k]!=0){

528 pow_rx [k]=pow_rx [k]-—gamma;
529 }

530 potencialk]=pow_rx[k];

531 posicions_usades[k]=0;

532 tbreak;

533 case 2: //dBm

534 for (k=0;k<num_places;k++)

535 {

536 if (pow.rx[k]!=0){

537 pow-rx [k]=pow_rx[k]+gamma;
538 }

539 potencialk]=pow_rx[k];

540 posicions_usades[k]=0;

541 tbreak;

542 case 3: //lineal

543 for (k=0;k<num_places;k++)

544 {

545 pow_rx [k]=pow_rx [k] *Math.exp (-gammaxdelay_seconds/1000.0) ;
546 potencialk]=pow_rx[k];

547 posicions_usades[k]=0;

548 tbreak;

549 }

550 rx_-msg=0;

551

552 }

553

554 }i

555 if (temp==1){

556 new Timer (delay.seconds, temporitzador) .start();
557 temp=0;

558 }

559

560 }

561 public float[] getcoordinates() {

562 return posCordinates;

563 }

564 private static void usage() {

565 System.err.println("usage: RssiDemo [-comm <source>]");
566 }

567
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568 public static void main(String[] args) throws Exception {
569 String source = null;

570 if (args.length == 2) {

571 if (l'args[0].equals ("-comm")) {

572 usage () ;

573 System.exit (1);

574 }

575 source = argsl[l];

576 }

577 else if (args.length != 0) {

578 usage () ;

579 System.exit (1);

580 }

581

582 PhoenixSource phoenix;

583

584 if (source == null) {

585 phoenix = BuildSource.makePhoenix (PrintStreamMessenger.err);
586 }

587 else {

588 phoenix = BuildSource.makePhoenix (source, PrintStreamMessenger.err);
589 }

590

591 MoteIF mif = new MotelF (phoenix);

592

593 RssiDemo serial = new RssiDemo (mif);

594

595

596 }

597

598

599

Listing C.2: JAVA code of Window.java

/%
* To change this template, choose Tools \ Templates
* and open the template in the editor.

*/

package mymaps;

/ x*

*
* @author spcomnav

*/
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12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

import java.awt.event.ActionEvent;
import Jjava.net.URL;

import java.net.MalformedURLException;
import java.util.ArrayList;

import java.util.logging.Level;

import java.util.logging.Logger;

import org.jposition.CharacterInvalidException;
import org.jposition.Colors;

import org.jposition.Coordinate;

import org.jposition.CoordinateRangeException;
import org.jposition.Dimension;

import org.jposition.DimensionRangeException;
import org.jposition.MapTypeException;

import org.jposition.Marker;

import org.jposition.MarkersMap;

import org.jposition.ZoomRangeException;
import javax.swing.sx;

import java.awt.x;

import java.util.List;

import edu.uab.geoloc.DevicelInfo;

import edu.uab.geoloc.ServerWrapper;

import sun.audio.x;

import java.io.x;

public class Window extends javax.swing.JFrame{

//Variabe declaration
public String[] MapURL;
//public String mapurl;
public MarkersMap mapa;
public ImageIcon image, marker, freeParking,nonfreeParking;
public JLabel markerLabel, markerAnchorl,markerAnchor2, markerAnchor3,
markerAnchor4, markerAnchor5, markerAnchoro6;
public int PosCalculated, refresh, zoom, ParkingIconSizeWidth,
ParkingIconSizeHeight, ini=0;
public ArrayList<JLabel> markers;
public List<ParkingSensors> parkings;
public List<JLabel> markerAnchors;
public List<DeviceInfo> 1li;
public double centrallatToUTM, centrallonToUTM, centrallonToUTMproof,
centrallatToUTIMproof, x_-mob, y-mob,mpp=0,centrallat=0,
centrallon=0, cpx,cpy, contador=0.0;
public boolean coldstart, warmstart, audio;

public InputStream in=null;
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59 public AudioStream as=null;

60 public long[] indexes;

61

62

63 private javax.swing.JTextField NewCord;

64 private javax.swing.JTextField centralcord;

65 public javax.swing.JButton JjButtonl;

66 public javax.swing.JButton jButton3;

67 private javax.swing.JButton jButton4;

68 private javax.swing.JLabel jLabell;

69 private javax.swing.JLabel jLabel2;

70 private javax.swing.JLabel jLabel3;

71 private javax.swing.JLabel jLabel4;

72 private javax.swing.JLabel jLabel5;

73 private javax.swing.JLabel jLabel6;

74 private javax.swing.JLabel jLabel7;

75 private javax.swing.JLayeredPane JjLayeredPanel;
76 private javax.swing.JLabel labellImage;

77 private javax.swing.JCheckBox jCheckBoxl;

78

79

80 /** Creates new form Window =/

81 public Window () {

82 //initComponents () ;

83 jLabell = new javax.swing.JLabel ();

84 centralcord = new javax.swing.JTextField();
85 jButtonl = new javax.swing.JButton () ;

86 jLabel3 = new javax.swing.JLabel ();

87 NewCord = new javax.swing.JTextField();

88 jLayeredPanel = new javax.swing.JLayeredPane () ;
89 labelImage = new Jjavax.swing.JLabel () ;

90 jButton3 = new javax.swing.JButton();

91 jLabel2 = new javax.swing.JLabel ();

92 jLabeld4 = new javax.swing.JLabel();

93 jButton4 = new javax.swing.JButton();

94 jLabel5 = new javax.swing.JLabel () ;

95 jLabel6 = new javax.swing.JLabel ();

96 jLabel7 = new javax.swing.JLabel ();

97 jCheckBoxl = new javax.swing.JCheckBox () ;
98

99 setDefaultCloseOperation (javax.swing.WindowConstants.EXIT_.ON_.CLOSE) ;
100 setTitle ("Xaloc Project. Car Positioning ");
101

102 jLabell.setText ("Central cordinate");

103

104 centralcord.setEnabled(false);

105
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106 jButtonl.setText ("Cold start");

107 jButtonl.addActionListener (new java.awt.event.ActionListener () {
108 public void actionPerformed(java.awt.event.ActionEvent evt) {
109 jButtonlActionPerformed(evt) ;

110 }

111 b

112

113 jLabel3.setText ("Measured cordinate");

114

115 NewCord.setEnabled(false);

116

117 labelImage.setPreferredSize (new java.awt.Dimension (620, 500));

118 labelImage.setBounds (0, 10, 620, 500);

119 jLayeredPanel.add (labelImage, javax.swing.JLayeredPane.DEFAULT_LAYER);
120

121 JjButton3.setText ("Warm start");

122 jButton3.addActionlListener (new java.awt.event.ActionListener () {
123 public void actionPerformed(java.awt.event.ActionEvent evt) {
124 jButton3ActionPerformed (evt) ;

125 }

126 b

127

128 jLabel2.setFont (new java.awt.Font ("Tahoma", 1, 26));

129 jLabel2.setText ("ARID NAVIGATOR");

130

131 jLabeld.setFont (new java.awt.Font ("Tahoma", 1, 12));

132 jLabel4.setText("Z§© 2010 SPCOMNAV - XALOC PROJECT");

133

134 JjButtond.setText ("Refresh");

135 jButtond.setEnabled(false);

136 jButtond.addActionListener (new java.awt.event.ActionListener () {
137 public void actionPerformed(java.awt.event.ActionEvent evt) {
138 jButton4ActionPerformed (evt) ;

139 }

140 b

141 jLabel5.setText ("");

142 jLabel7.setText ("");

143 jLabel6.setText ("");

144 jCheckBox1.setText ("Audio Off/On");

145 jCheckBoxl.addActionListener (new java.awt.event.ActionListener () {
146 public void actionPerformed(java.awt.event.ActionEvent evt) {
147 jCheckBox1lActionPerformed (evt) ;

148 }

149 b

150 javax.swing.GroupLayout layout = new javax.swing.GroupLayout (getContentPane());
151 getContentPane () .setLayout (layout) ;

152 layout.setHorizontalGroup (
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154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

191

192

193

194

195

196

197

198

199

layout.createParallelGroup (javax.swing.GroupLayout.Alignment . LEADING)
.addGroup (layout .createSequentialGroup ()
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment . LEADING)
.addGroup (layout.createSequentialGroup ()
.addContainerGap ()
.addGroup (layout .createParallelGroup (javax.swing.GroupLayout.Alignment . LEADING)
.addGroup (layout .createSequentialGroup ()
.addComponent (jLayeredPanel, javax.swing.GroupLayout.PREFERRED_SIZE, 620,
javax.swing.GroupLayout .PREFERRED_SIZE)
.addGroup (layout .createParallelGroup (javax.swing.GroupLayout .Alignment . LEADING)
.addGroup (layout .createSequentialGroup ()
.addGap (70, 70, 70)
.addGroup (layout .createParallelGroup (javax.swing.GroupLayout .Alignment . LEADING)
.addComponent (jLabel7)
.addComponent (jCheckBoxl, javax.swing.GroupLayout.PREFERRED_SIZE, 100,
javax.swing.GroupLayout .PREFERRED_SIZE)
.addComponent (jButton4)
.addComponent (jButton3)
.addComponent (jButtonl)))
.addGroup (layout.createSequentialGroup ()
.addGap (18, 18, 18)
.addGroup (layout .createParallelGroup (javax.swing.GroupLayout.Alignment . LEADING)
.addComponent (jLabel6, Jjavax.swing.GroupLayout.PREFERRED_SIZE, 343,
javax.swing.GroupLayout .PREFERRED_SIZE)
.addComponent (jLabel5, javax.swing.GroupLayout.DEFAULT_SIZE, 343,
Short .MAX_VALUE) ))))
.addGroup (layout.createSequentialGroup ()
.addGap (48, 48, 48)
.addComponent (jLabel3)
.addGap (18, 18, 18)
.addComponent (NewCord, javax.swing.GroupLayout.PREFERRED_SIZE, 160,
javax.swing.GroupLayout .PREFERRED_SIZE)
.addGap (18, 18, 18)
.addComponent (jLabell)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .UNRELATED)
.addComponent (centralcord, javax.swing.GroupLayout.PREFERRED_SIZE, 163,
javax.swing.GroupLayout .PREFERRED_SIZE) ) )
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED,
javax.swing.GroupLayout .DEFAULT_SIZE, Short.MAX_VALUE))
.addGroup (javax.swing.GroupLayout .Alignment . TRAILING,
layout.createSequentialGroup ()
.addContainerGap (415, Short.MAX_VALUE)
.addGroup (layout .createParallelGroup (javax.swing.GroupLayout.Alignment . LEADING)
.addComponent (jLabel2, javax.swing.GroupLayout.PREFERRED_SIZE, 265,
javax.swing.GroupLayout .PREFERRED_SIZE)
.addGroup (layout.createSequentialGroup ()
.addGap (10, 10, 10)
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200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

240

241

242

243

244

245

246

.addComponent (jLabel4)))

.addGap (311, 311, 311)))

.addGap (50, 50, 50))

)i

layout.setVerticalGroup (

layout.createParallelGroup (javax.swing.GroupLayout.Alignment .LEADING)
.addGroup (layout.createSequentialGroup ()

.addContainerGap ()

.addComponent (jLabel2)

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addComponent (jLabel4)

.addGroup (layout.createParallelGroup (javax.swing.GroupLayout .Alignment . LEADING)

.addGroup (layout.createSequentialGroup ()
.addGap (23, 23, 23)

.addGroup (layout.createParallelGroup (javax.swing.GroupLayout .Alignment .BASELINE)

.addComponent (jLabel3)

.addComponent (NewCord, javax.swing.GroupLayout.PREFERRED_SIZE,
javax.swing.GroupLayout .DEFAULT_SIZE, javax.swing.GroupLlayout.PREFERRED_SIZE)
.addComponent (jLabell)

.addComponent (centralcord, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout .DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)))

.addGroup (layout.createSequentialGroup ()

.addGap (18, 18, 18)

.addComponent (jLabel6, Jjavax.swing.GroupLayout.PREFERRED_SIZE, 20,
javax.swing.GroupLayout .PREFERRED_SIZE)))

.addGroup (layout.createParallelGroup (javax.swing.GroupLayout .Alignment . LEADING)

.addGroup (layout.createSequentialGroup ()

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)

.addComponent (jLayeredPanel, javax.swing.GroupLayout.PREFERRED_SIZE, 500,
javax.swing.GroupLlayout .PREFERRED_SIZE) )

.addGroup (layout.createSequentialGroup ()

.addGap (18, 18, 18)

.addComponent (jLabel5, javax.swing.GroupLayout.PREFERRED_SIZE, 28,
javax.swing.GroupLayout .PREFERRED_SIZE)

.addGap (158, 158, 158)

.addComponent (jLabel7, javax.swing.GroupLayout.PREFERRED_SIZE, 22,
javax.swing.GroupLayout .PREFERRED_SIZE)

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)

.addComponent (jButtonl)

.addGap (18, 18, 18)

.addComponent (jButton3)

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .UNRELATED)

.addComponent (jButton4)

.addGap (18, 18, 18)

.addComponent (jCheckBox1)))

.addContainerGap (28, Short.MAX_VALUE))

)
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247

248 jLabell.getAccessibleContext () .setAccessibleName ("Direccion");

249

250 pack () ;

251 MyIniComponents () ;

252

253

254 }

255 public void MyIniComponents (){

256 zoom=19;

257 PosCalculated=0;

258 refresh=0;

259 cpx=this.labelImage.getWidth () /2; // central pixel in x

260 cpy=this.labelImage.getHeight () /2; //central pixel in vy

261

262 //free Parking icon

263 freeParking = new Imagelcon(getClass () .getResource ("/mymaps/pBlau.gif"));
264 freeParking = new ImagelIcon (freeParking.getImage () .getScaledInstance (20,
265 20, Image.SCALE_SMOOTH));

266

267 //non free Parking icon

268 nonfreeParking = new Imagelcon (getClass () .getResource ("/mymaps/pVermell.gif"));
269 nonfreeParking = new ImagelIcon (nonfreeParking.getImage () .

270 getScaledInstance (20, 20, Image.SCALE_SMOOTH));

271

272 ParkingIconSizeWidth= freeParking.getIconWidth () ;

273 ParkingIconSizeHeight= freeParking.getIconHeight ();

274

275 //Adding parking Sensors

276 parkings= new ArrayList<ParkingSensors>();

277 parkings.add (new ParkingSensors (426064.21, 4594717.32)); //anchor 1
278 parkings.add (new ParkingSensors (426070.39, 4594724.20)); //anchor 2
279 parkings.add (new ParkingSensors (426060.76, 4594720.39)); //anchor 3
280 parkings.add (new ParkingSensors (426066.66, 4594727.57)); //anchor 4
281 parkings.add (new ParkingSensors (426057.03, 4594723.72)); //anchor 5
282 parkings.add (new ParkingSensors (426062.95, 4594730.92)); //anchor 6
283 parkings.add (new ParkingSensors (426053.30, 4594727.05)); //anchor 7
284 parkings.add (new ParkingSensors (426059.24, 4594734.28)); //anchor 8
285 parkings.add (new ParkingSensors (426049.56, 4594730.38)); //anchor 9
286 parkings.add (new ParkingSensors (426055.53, 4594737.63)); //anchor 10
287 parkings.add(new ParkingSensors (426045.83, 4594733.70)); //anchor 11
288 parkings.add (new ParkingSensors (426051.82, 4594740.98)); //anchor 12
289 //added

290 parkings.add(new ParkingSensors (426042.10,4594737.03)); //anchor 13
291 parkings.add(new ParkingSensors (426048.11,4594744.33)); //anchor 14
292 parkings.add (new ParkingSensors (426038.37,4594740.36)); //anchor 15
293 parkings.add (new ParkingSensors (426044.40,4594747.69)); //anchor 16
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294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

; //anchor 17
; //anchor 18
; //anchor 19
; //anchor 20

parkings.add(new ParkingSensors (426034.63,4594743.68

(
parkings.add (new ParkingSensors (426040.69,4594751.04
(
(

(
(
parkings.add (new ParkingSensors (426030.90,4594747.01
parkings.add (new ParkingSensors (426036.98,4594754.39

1i = new ArrayList <DeviceInfo>();
markerAnchors=new ArrayList<JLabel>();

audio=false;

private void jButtonlActionPerformed(java.awt.event.ActionEvent evt) {

//cold start button
coldstart=true;

warmstart=false;

this.jButtonl.setEnabled(false);
this.jButton3.setEnabled(false);
this.jButtond.setEnabled(true);

if (this.refresh==1){

this.refresh=0;

checkParkingState(); //another timer with audio

private void jButton3ActionPerformed (java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
//Warm Start button
coldstart=false;
warmstart=true;
this.jButtonl.setEnabled(false);
this.jButton3.setEnabled(false);
checkParkingState(); //with audio

private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
//Refresh button
PosCalculated=0;
refresh=1;
jLayeredPanel.removeAll ();
jLayeredPanel.validate () ;
repaint () ;
this.labelImage.setIcon (image) ;
jLayeredPanel.add(this.labelImage);
}
private void jCheckBoxlActionPerformed(java.awt.event.ActionEvent evt)
// TODO add your handling code here:
if (!jCheckBoxl.isSelected()){

audio=false;

{
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341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

}

else if (jCheckBoxl.isSelected()){

audio=true;

}

@SuppressWarnings ("static-access")

public void startNavigator (double UTMEasting, double UTMNorthing,

double[] potencia, double vkalman){
//System.out.println ("iniciando");
double diffxx0, diffyy0,measuredLat, measuredLon;

int pmpx, pmpy;

double[] centralGeoCordinates, measuredGeoCordinates;

PosCalculated=PosCalculated+1;
y-mob= (double) UTMNorthing;
x_mob= (double)UTMEasting;

//pmpx: pixels of the measured easting in x

//pmpy: pixels of the measured northing in vy

//diffxx0: x-x0, diffyy0: y-y0; (x0,y0): are the central cordinates

//of the map in UTM and (x,y) are the

//measured coordinates

String newUTM, mapurl;

Coordinateconversion cordinates = new Coordinateconversion();

Coordinate coordenadal = null;

if (this.refresh==1 & coldstart){
centralLatToUTM=y_mob;
centralLonToUTM=x_mob;

}

if (PosCalculated==1)

if (coldstart) {

centralLatToUTM=y_mob;

centralLonToUTM=x_mob;

}

else if (warmstart){

//centrallLatToUTM=4594716.87;

centrallLatToUTM=4594716.25;

//centrallLonToUTM=426068.23;

centralLonToUTM=426068.65;

}

newUTM="31 T "+String.valueOf (centrallLonToUTM) +"
String.valueOf (centrallatToUTM) ;

"y
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388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

centralGeoCordinates=cordinates.utm2LatLon (newUTM) ;
centrallat=centralGeoCordinates[0];
centrallon=centralGeoCordinates[1];

this.centralcord.setText (String.valueOf (centrallat) .
substring (0, 8)+" "+String.valueOf (centrallon) .substring(0,8));
this.centralcord.setEnabled (true);
//mpp: meters per pixel
mpp= this.getmpp();

}

else if (PosCalculated>1){
jLayeredPanel.remove (markerLabel) ;
jLayeredPanel.validate () ;

repaint () ;

newUTM="31 T "+String.valueOf (x_-mob)+" "+String.valueOf (y-mob);
measuredGeoCordinates=cordinates.utm2LatLon (newUTM) ;
measuredLat= measuredGeoCordinates[0];

measuredLon= measuredGeoCordinates([1];

NewCord.setText (String.valueOf (measuredLat) .substring (0,8)+", "+
String.valueOf ( measuredLon) .substring (0, 8));

NewCord.setEnabled (true) ;

diffxx0=x_mob-centralLonToUTM;

diffyyO0=y_-mob-centralLatToUTM;

pmpx=Math.round ( (float) (cpx+diffxx0/mpp)) ;
pmpy=Math.round ((float) (cpy-diffyy0/mpp)) ;

marker = new Imagelcon (getClass () .getResource ("/mymaps/puntV.gif"));

//changing the size of the image

marker = new Imagelcon (marker.getImage () .getScaledInstance (20, 20,
Image.SCALE_SMOOTH) ) ;

markerLabel = new JLabel (marker);

// Calculamos el punto X medio del mapa para el icono.
pmpx = Math.round (pmpx—- markerLabel.getIcon () .getIconWidth()/3);
// Calculamos el punto Y medio del mapa para el icono.

pmpy = Math.round (pmpy+markerLabel.getIcon () .getIconHeight ()/3);

markerLabel.setBounds (pmpx, pmpy,
markerLabel.getIcon () .getIconWidth(),
markerLabel.getIcon () .getIconHeight ());
// Insertamos el componente en la capa 1 (por encima de la capa 0)

try {
coordenadal = new Coordinate (centrallat,centrallon);
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435

436 } catch (CoordinateRangeException ex) {

437 Logger.getLogger (Window.class.getName ()) .log (Level.SEVERE,

438 null, ex);

439 }

440

441 if (coldstart) {

442 // System.out.println ("coldstart");

443 try {

444 ArrayList<Marker> listaPuntos = new ArraylList<Marker>();

445

446 mapa = new MarkersMap("", coordenadal, 17, listaPuntos);

447 mapa.setDimmension (new Dimension (610, 500));

448 mapa.setMapType (MarkersMap.Satellite);

449

450 mapurl=mapa.getMapURL () ;

451 mapurl=mapurl.replaceAll ("zoom=17", "zoom="+String.valueOf (zoom)) ;
452

453 try {

454

455 if (PosCalculated==1)

456 {

457 System.out.println ("Ahora empezamos a descargar la imagen " +

458 "servidor") ;

459 long tiempoInicio = System.currentTimeMillis();

460 image = new ImagelIcon (new URL (mapurl));

461 this.labellImage.setIcon (image);

462 long TotalTiempo = System.currentTimeMillis()-tiempoInicio;

463 System.out.println("El tiempo de demora en obtener la imagen " +
464 "del servidor es:" + TotalTiempo/1000 + " seg");

465 }

466 } catch (MalformedURLException ex) {

467 Logger.getLogger (Window.class.getName ()) .log(Level.SEVERE, null, ex);
468 }

469 }catch (MapTypeException ex) {

470 Logger.getLogger (Window.class.getName ()) .log (Level.SEVERE, null, ex);
471

472 }catch (DimensionRangeException ex) {

473 Logger.getLogger (Window.class.getName ()) .log (Level.SEVERE, null, ex);
474 } catch (ZoomRangeException ex) {

475 Logger.getLogger (Window.class.getName ()) .log (Level.SEVERE, null, ex);
476

477 }

478

479

480

481

}

else if (warmstart){
if (PosCalculated==1)
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482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

{

image = new Imagelcon (getClass () .getResource ("/mymaps/mapal.jpg"));

this.labelImage.setIcon (image) ;

}

jLayeredPanel.setLayer (markerLabel, new Integer(2));

jLayeredPanel.add (markerLabel ,new Integer(2));

public double getmpp (){
mpp= Math.cos (centrallLat+Math.PI/180) % (1/Math.pow (2, (zoom+8)))*40075017;
return mpp;
}
public void checkParkingState () {
if (jCheckBoxl.isSelected()){
audio=true;
}
int delay=10000; //every 2 sg we wheck the state of each parking
java.awt.event.ActionListener taskPerformer = new
java.awt.event.ActionListener () {
public void actionPerformed(java.awt.event.ActionEvent evt) {
int num_free_parkings=0;
try{
li=ServerWrapper.getData();
}catch (Exception e){}
try{

for (int pos=1; pos<18; pos++){
if (li.get (pos) .isOcupat ()){
drawParkingIcon (pos-1, li.get (pos).isOcupat());

if (!li.get (pos).isOcupat ()){

num_free_parkings++;

drawParkingIcon (pos—-1, li.get (pos) .isOcupat());
}
}
if (contador %10 == 0 && audio){

sound (num_free_parkings);

}

}catch (Exception e){

e.printStackTrace () ;

}

contador=contador+10.0;

if (ini==0){ini=ini+1;}
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529 }

530 I

531 new Timer (delay, taskPerformer).start();

532 }

533

534 public void drawParkingIcon (int id, boolean state){

535 double metersppx, diffanchxx0, diffanchyyO0;

536 int pmpanchx, pmpanchy;

537 double bb, cc;

538 metersppx= this.getmpp () ;

539

540 bb=parkings.get (id) .getUTM_lat () ;

541 cc=parkings.get (id) .getUTM_lon () ;

542 diffanchyy0 = parkings.get (id) .getUTM_lat () -centrallLatToUTM;
543 diffanchxx0 = parkings.get (id) .getUTM_lon () -centralLonToUTM;
544

545 pmpanchx= Math.round((float) (cpx+diffanchxx0/metersppx));
546 pmpanchy= Math.round((float) (cpy-diffanchyy0/metersppx)) ;
547 pmpanchx=Math.round (pmpanchx - ParkingIconSizeWidth/3);

548 pmpanchy=Math.round (pmpanchy+ ParkingIconSizeHeight/3);

549

550 if (ini!=0){

551 jLayeredPanel.remove (markerAnchors.get (17));

552 jLayeredPanel.validate () ;

553 jLayeredPanel.repaint () ;

554 }

555 if (state){

556 markerAnchorl = new JLabel (nonfreeParking);

557 telse{

558 markerAnchorl = new JLabel (freeParking);

559 }

560 markerAnchors.add (id, markerAnchorl) ;

561 markerAnchors.get (id) . setBounds (pmpanchx, pmpanchy,

562 freeParking.getIconWidth (), freeParking.getIconHeight ());
563 jLayeredPanel.setlLayer (markerAnchors.get (id), new Integer(l));
564 jLayeredPanel.add (markerAnchors.get (id) ,new Integer(l));
565

566

567 }

568 public void sound(int numFreeParkings){

569 try{

570

571 String file = "/audio/"+String.valueOf (numFreeParkings)+".wav";
572 in = getClass () .getResourceAsStream(file);

573 as = new AudioStream (in);

574 AudioPlayer.player.start (as);

575 }catch (Exception e){
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576 e.printStackTrace();
577 }
578
579 }
580 }
Listing C.3: JAVA code of ParkingSensors.java
1/
2 * To change this template, choose Tools | Templates
3 * and open the template in the editor.
4 %/
5
6 package mymaps;
7
8 /%
9 *
10 * @author Administrador
11 */
12 public class ParkingSensors {
13 private double UTM_lat, UTM_lon;
14
15 public ParkingSensors (double UTM_lon,double UTM_lat) {
16 //Coordinateconversion con = new Coordinateconversion();
17 //String[] utm;
18 //utm=con.latLon2UTM(GPS_lon, GPS_lon).split ("\\s+");
19 this.UTM_lat= UTM_lat;
20 this.UTM_lon = UTM_lon;
21 }
22
23
24 public double getUTM_lat () {
25 return UTM_lat;
26 }
27
28 public double getUTM_-lon () {
29 return UTM_lon;
30 }
31
32 public void setUTM_lat (double UTM_lat) {
33 this.UTM_.lat = UTM_lat;
34 }
35
36 public void setUTM_lon (double UTM_lon) {
37 this.UTM_lon = UTM_lon;

38
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39

40

41

Listing C.4: JAVA code of KalmanFilter.java

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

/ *
* To change this template, choose Tools
*+ and open the template in the editor.

*/

package mymaps;

[ **

*

* @author spcomnav

x/
public class Kalman_filter {
double[] KFestimates = new double[2];

double samplingT;
double [][]P=new double[2][2];
double[] k = new double[2];

public Kalman_filter (){};

| Templates

public Kalman_filter (double x0Omob,double v, double T,double R){

KFestimates [0]=x0mob;

KFestimates[1l]=v;

P[0][0]=R;

P[O][1]=R/T;

P[1][0]= R/T;
P[1][1]=2*R/Math.pow (T, 2);

samplingT=T;

}

public double[] kalman (double statevector([],double V,double R,double z) {

double posx,vx,T, S,error;
T=this.samplingT;

double[]
//and updated state vector
double[][] Q,

Q= new double

tau, predsv, correction,updsv;
P_pred, P_upd,P;

[21021;

[(21021;

P_upd=new double [2][2];

tau=new double[2];

P_pred=new double

predsv=new double[2];

//prediction state vector,
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41 updsv=new double[2];

42 correction=new double[2];

43 P=this.P;

44

45 posx=statevector[0];

46 vx=statevector[1l];

47 //BELOW GENERATING KALMAN COEFFICIENTS————————————————————————
48 tau[0] = (1/2)+*Math.pow(T, 2);

49 taul[l]=T;

50

51 Q[0][0]=((Math.pow (T, 4))/4)=*V;

52 Q0] [1]l=((Math.pow (T, 3))/2)*V;

53 Q[1]1[0]=Q[0][1];

54 Q[1][1l]l=(Math.pow (T, 2))~*V;

55

56 P_pred[0]1[0]=P[0][0]+P[1][0]*T+P[0] [1]1+T+P[1][1]
57 *Math.pow (T, 2)+Q[0][0];

58 P_pred[0][1]=P[O][1]+P[1]1[1]1«T+Q[0][1];

59 P pred[1][0]=P[1]([0]+P[1][1]*T+Q[1][0];

60 Ppred[1][1]=P[1][1]1+Q[1]([1];

61

62 S=P_pred[0] [0]+R;

63

64 k[0]=P_pred[0][0]/S;

65 k[1]=P_pred[1][0]/S;

66

67 Pupd[0][0]=P_pred[0][0]-Math.pow(k[0], 2)=xS;
68 Pupd[0] [1]=P_pred[0] [1]-k[0]*S*k[1];

69 P_upd([1] [0]=P_pred[1][0]-k[0]*S*xk[1l];

70 P.upd[l][1]=P_pred[l][l]-Math.pow(k[1], 2)=*S;
71

72 this.P=P_upd;

73 )
74 //BELOW RUNNING KALMAN EQUATIONS!!!

75 predsv[0]=posx+T*vx;

76 predsv[l]=vx;

77

78 error=z-predsv|[0];

79 correction[0]=k[0] xerror;

80 correction[l]=k[1l]*error;

81

82 updsv[0]=correction[0]+predsv[0];

83 updsv[l]=correction[l]+predsv[1l];

84

85

86 return updsv;

87 }
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88 public double[] getcoefficients(){
89 return k;

9 }

91 }




Appendix D

XALOC news

The XALOC project has demonstrated a novel system to automatically guide the drivers to find
free parking slots in an urban area. This is done installing one sensor mote in each parking slots.
The sensors send to a central server information whether a parking slots is busy or not. On the
other hand, all the sensors contribute to perform positioning of the driver using some positioning
methods. Thus a navigator implementation is developed to show the real-time position of the
driver when he is moving at a low speed looking for an available parking. This navigator shows
also the number of free-non free parking slots and has the option to notify the number of available

parkings by audio.

The XALOC project was demonstrated in a pilot test in the last INFOREGIO projects
announcement (with a reference number 2009INFOREGIO-0016). XALOC project got a large
impact to both fields research-technical and the media. The details of the project appeared the
following day in TV media (TV,TV3, BTV, ETB,...), radio (RAC1, RNE, COM Radio, ...) and
press (El periédico de Catalunya, Diari AVUI, La vanguardia, El Punt, ...).

This appendix shows some photos taken during the live demonstration as well as some di-
vulged news from the press obtained on July 07 2010 at the GPS coordinates 41.500848,2.113959
which is located at the UAB fire department parking.

D.1 Photos of the demonstration day

This section shows some taken photos at the demonstration day with different production com-
panies: TV3, TVE-1, Antenad, Telecinco, BTV noticies, Atlas and eitb.

193
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Figure D.1: Photos showing different production companies

Figure D.2: D.2(a) shows the used car for the demonstration. D.2(b) shows all the used equip-

ment for the demonstration

Figure D.3: They are the BTV Noticies producers.
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D.2 Live demonstration news

This section shows some recollected news of the live demonstration.



DIARI DE TERRASSA
TERRASSA

Prensa:
Tirada:
Difusion:

08/07/10

Diaria
5.998 Ejemplares
4.991 Ejemplares

=

Péagina: 10

Seccién: LOCAL Valor: 376,00 € Area (cm2): 499,2 Ocupacion: 45,55 %

Documento: 1/1

Cod: 39572659

Un sistema
detecta las plazas
libres de parking
en la calle

Han participado investigadores de la UAB

© El dispositivo es
pionero en Europa
y funciona a través
de internet

Redaccién

La mayoria de parkings subterrdneos
disponen de un panel electrénico que
informa de si hay plazas vacias en
cada planta. El sistema permite que
los conductores vayan directamente
hacia la planta donde hay espacios li-
bres. La férmula evita que los conduc-
tores den rodeos por el interior del es-
tacionamientos y que este espacio re-
duzca el nivel de movilidad por el in-
terior del edificio.

;Este modelo de gestién podria apli-
carse en parkings en superficies como
las zonas azules o verdes?. Esta es la
pregunta que se hicieron investigado-

res de la Universitat Autbnoma de Bar-
celona (UAB) junto con la empresa
WorlSensing y el Centre Tecnologic de
Telecomunicacions de Catalunya
(CTTC). Y ya hay respuesta. El grupo
ha desarrollado un dispositivo con
tecnologia muy avanzada y mds pre-
cisa que el GPS, capaz de localizar las
plazas de aparcamiento libres en la ca-
lle y guiar al usuario hasta la mas pro-
xima.

El sistema, denominado Xaloc, fun-
ciona mediante la instalacidn de una
red de sensores sin hilos sobre las pla-
zas en superficie. Estos sensores de-
tectan si la plaza estd ocupada o noy
transmiten la informacion, mediante
internet, a un servidor central. El ser-
vidor procesa los datos y los envia ha-
cia los paneles indicativos situados en
la calle, que muestran la informacién
del estado de ocupacidn de la zona en
tiempo real. Esta informacién tam-
bién podria llegar de una forma mds

personalizada al usuario a través del
teléfono mévil o de GPS de tiltima ge-
neracién.

NOVEDAD Y COSTE

El dispositivo fue presentado ayer por
los investigadores José Ldpez Vicario
y Antoni Morell, del departamento de
Telecomunicaciones e Ingenieria de
Sistemas de la UAB; Ignasi Vilajosana,
gerente de la empresa WorlSensing y
Mischa Dohler, investigador del
CTTC. El grupo destacé que el siste-

IgnasiVilajosana, gerente de WorldSensing, flanqueado por los investigadores Mischa Dohler y José Lépez Vicario.

ma es pionero en Europa y que hay al-
gunos ayuntamientos que se han in-
teresado en su aplicacién, entre éstos
los de Barcelona, Sant Cugat y Saba-
dell. Todos ellos han mostrado su dis-
posicién a probar el invento.

Los responsables prevén que la pla-
taforma sea abierta y de acceso gra-
tuito. Si que tiene un coste la instala-
cién de los sensores en la calle. Se es-
tima que cada sensor cuesta unos 170
euros, una cantidad que deberfan
asumir los consistorios. Sin embargo,

Vilajosana anadi6 que el sistema per-
mite adoptar servicios complementa-
rios para amortizar la inversién. Entre
éstas sefiald la reserva previa de plaza
de aparcamiento o la posibilidad de
pagar la tarifa de estacionamiento me-
diante el mavil, segtin recoge la agen-
cia Europa Press, Para los creadores
delinvento, el nuevo sistemna también
es beneficioso para reducir la conta-
minacion de CO2, en la medida que
si se conocen las plazas libres y ocu-
padas hay una circulacion més fluida.
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SI NO QUIERES RASCARTE EL BOLSILLO, ESTACIONA POR ENCIMA DE LA RONDA DE DALT

Barcelona pierde plazas de
aparcamiento gratis ano tras ano

El nimero de espacios para dejar el coche sin pagar descendid en 15.712 en 2009 respecto
a 2008. Por contra, el Area Verda reservada para los vecinos crecié mas de un 57%

CARLA MERCADER
carla.mercader@que.es

Estacionar el coche en Barcelo-
na sin rascarse el bolsillo ya es
casi imposible en el centro y to-
do apunta a que se complicara
todavia mds a medida que pasen
los anos, ya que que el nimero
de plazas de aparcamiento no
reguladas en la calle no para de
descender. Segln datos munici-
pales, en 2009 eran 121.407 los
espacios gratuitos —15.712 menos
que en 2008, o lo que es lo mis-
mo, un 11,5% menos—, mientras
que en 2007 eran 137.119 y en
2006, 137.326. Las plazas de pago
para estacionar en la calzada,
por contra, aumentan. Y es que
la politica municipal de gestion
de la movilidad apuesta por este
tipo de espacios, que pasaron de
ser 43.761 en 2006 a sumar 50.619
en 2009, Los estacionamientos
de Area Verda Preferent, es de-
cir, exclusiva para los vecinos,
son los que mas se multiplican.
El afio pasado eran 35.729, un
57.2% mds que en 2008, Este mes
de julio el Area Verda se ha am-
pliado en 12.000 plazas en Poble-
nou, Sarria, Gracia, Sant An-
dreu y Vall d’'Hebron.

LOS VECINOS,
SATISFECHOS

Jordi Gird, vicepresidente de
la Federacié d'Associacions
de Veins de Barcelona, afir-
ma que aunque "pagar no
gusta” el Area Verda “ha

descongestionade” la ciudad
y “ha mejorado la calidad
ambiental y la calidad de vida
de los vecinos". "Incluso hay
menos coches abandonados
o en venta en la calle”, apun-
ta. Sin embargo, dice que en
algunas zonas, como Gracia,
faltan parkings publicos.

El Area Verda sélo se pone en marcha en los barrios a peticién de los vecinos

ES MAS FACIL NO PAGAR EN GRACIA, HORTA, NOU BARRIS Y SARRIA-SANT GERVASI

Mas plazas no reguladas
en el norte de la ciudad
Desde el Ayuntamiento apun-
tan que la mayoria de plazas
que no son de pago estdn si-
tuadas en las zonas de Sarria-
Sant Gervasi, Gracia, Horta y
Nou Barris que quedan por en-
cima de la Ronda de Dalt.

618.440 plazas

en parkings

Segun datos del Consistorio de
2009, en Barcelona existen
618.440 plazas de estaciona-
miento en parkings “fuera de la
calzada”. Son un 0,9% mads
que en 2008 y un 4,7% mds
que en 2006.

El Area Verda cuesta hasta
2,94 euros por hora

Los vecinos paganieuroalase-
mana por el Area Verda en el caso
de que la usen. Las tarifas para los
demas ciudadanos van desde 1,08
hasta 2, 94 euros por hora, en
funcién de la demanda de estacio-
namiento existente en cada zona.

NACE UN SISTEMA PARA LOCALIZAR SITIOS
LIBRES SIN TENER QUE DAR VUELTAS

Investigadores de la UAB, el Cen-
tre Tecnologic de Telecomunica-
cions de Catalunya y la empresa
WorldSensing han creado un sis-
tema que localiza plazas de
aparcamiento libres en la calle y
guia al usuario hasta la mds cer-
cana. Se trata de una red de sen-
sores ubicados en las &reas Ver-
da y Blava que detecta el espacio
vacioy lo transmite a un servidor
central que lo reenvia a dispositi-
vos electronicos con internet,
como teléfonos moviles o GPS.

Reduce las

emisiones contaminantes
El sistema llegaria a evitar la emi-
sién de 400 toneladas diarias de
€02, gracias a la reduccién del
tiempo de busqueda de plaza,
gue alcanzalos 15,7 minutos de
media en Barcelona.

Los consistorios

deberian asumir el coste
Los ayuntamientos de Barcelona,
Sabadell y Sant Cugat han mos-
trado su interés por el sisterna.

ARCHIVO

El sistema esta pensado para dreas de pago.
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INNOVACIO » Un equip de la UAB idea la manera de reduir temps i contaminacio6

Un sistema facilita trobar
placa d’aparcament

GLORIA AYUSO

BARCELONA

=== Un conductor triga una
mitjana de 15,7 minuts a tro-
bar aparcament a Barcelona.
Un equip d’investigadors de
la Universitat Autonoma de
Barcelona (UAB) ha desenvo-
lupat juntament amb 'empre-
sa WorldSensing un sistema
que facilita la localitzacié de
les places lliures i guia el cotxe
fins a la més propera. Els seus
promotors asseguren que amb
el seu 1s es redueix una mitja-
na de tres minuts la recerca.

Teninten compte que cada dia
hi ha més d’'un milié de vehi-
cles a la ciutat que aparquen
als carrers, aixo vol dir un es-
talvi de 3 milions de minuts i
una reducci6 d’emissions de
400 tones de CO,,.

Altres avantatges son la re-
ducci6 del transit d'agitacid, o
transit de vehicles que circu-
len sense rumb especific bus-
cantun lloc on aparcar, de ma-
nera que es possibilita una mi-
llor fluidesa.

Lequip, encapcalat per José
Ldépez Vicario i Antoni Morell,

Trobar plaga d’aparcament pot ser més facil, segons asseguren els promotors del nou sistema de localitzacio. AcN

ha treballat durant un any en
el desenvolupament del pro-
jecte, que ha costat 400.000
euros i ha estat finangat per
I’Agéncia de Gestid d’Ajuts
Universitaris i Recerca del Go-
vern. El sistema de localitza-
cio, anomenat Xaloc, consis-
teix en la instal-lacié de sen-
sors al paviment del carrer, al
centre de les zones de les are-
es blaves i verdes. Els sensors
detecten si la placa esta ocu-
pada i transmeten la informa-
cié a través d’internet a un ser-
vidor que envia la informacié

]

El dispositiu
estalvia 3 milions
de minuts al volant
i400 tones de Co,
i

Uns sensors
identifiquen places
lliures i els cotxes
que en busquen

a panells indicatius situats a
l'entradadel carrer o ala crui-
llaimostra el seu estat d’ocu-
pacio.

Amés, “els sensorsdel car-
rer identifiquen els usuaris
que busquen plaga”, expli-
ca Vicario. Aixo és possible
mitjancant la descarrega del
programari d'un navegador
portatil, que els conductors
instal-len als seus mobils o
PDA. Els sensors, amb la se-
va doble funcié, possibiliten
identificar la ubicacié del ve-
hicle. El navegador comuni-
ca amb el servidor central i
reconeix el nombre de pla-
ces lliures a tota la ciutat i as-
senyala les més proximes al
vehicle. Lequip d'investiga-
dors assegura que la tecnolo-
gia de posicionament i loca-
litzacié funciona millor que
un GPS.

Lempresa WorldSensing té
previst comercialitzar el siste-
ma a finals d’any. Per ara s’hi
haninteressatels ajuntaments
de BarcelonaiSabadell, ones
portaran a terme proves pi-
lot. El seu responsable, Ignasi
Vilajosana, defensalarendibi-
litat dels aparells. Cada sensor
costa entre 120 i 150 euros.
“8i és més facil trobar placa hi
ha més rotacid a 'area blava i
verda. Entres anyss’amortitza
el preu”, explica 'empresari.

Pagament de les arees

Totique destaca que els prin-
cipals objectius sén reduir la
contaminaci6 i millorar la
fluidesa del transit, el siste-
ma pot tenir una tercera fun-
cio gens menyspreable per
als consistoris en temps de
crisi. Els sensors envien tota
la informacio sobre la rota-
cid i el temps d'ocupacié de
les places al servidor, que pot
comparar les dades amb el
nombre de tiquets que shan
impres a les maquines d’area
blava i verda. La Guardia Ur-
bana ho tindra aixi també
meés facilal’horade localitzar
els vehicles que no han pagat
el tiquet corresponent. »
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New System Helps Locate Car Park Spaces

By AlphaGalileo

Aresearch group from the Universitat Autonoma de Barcelona Department of Telecommunications and Systems
Engineering at the School of Engineering, led by José Lépez Vicario and Antoni Morell, took partin the
development of a new system which locates unoccupied car park spaces and guides users to the nearest one.
The new network of sensors for the management of public car parks and locations, which researchers have
named XALOC (Xarxes de sensors per a la gestié d’Aparcaments publics i LOCalitzacié), was developed by a
consortium formed by the firm WorldSensing (consortium leader) and the Centre for Telecommunications
Technology of Catalonia (CTTC). The project was financed by Catalan Government's Agency for Administration of
University and Research Grants (AGAUR).

The project's consortium developed a platform based on a network of wireless sensors capable of detecting
unoccupied spaces outdoors, and on an alternative positioning system with more precision in urban areas than
GPS technology. This platform is capable of locating and guiding drivers to car park spaces available in the area.

The network's sensors are located on the ground directly in the middle of the car park space. The sensors detect
whether the space is occupied or not and send information via internet to a central station. The server processes
this information and sends it to indication panels located in the street which display the information in real time.
Advanced communication techniques are used to send guidance data to the network.

The sensor platform atthe same time locates users looking to park and thus offers a personalised service. UAB
researchers have designed a specific portable navigator for users called ARID Navigator which makes use of
communication signals belonging to the network of sensors to position users within their urban surroundings.
Once the vehicle is located, the navigator communicates with XALOC's central server and reports to the user the
number of available car park spaces in the area and where they are located.

The positioning and location technology used to develop the system is totally new and offers many advantages in
comparison to conventional GPS navigators, such as more precise urban location techniques, reduced
positioning time and better coverage.

The XALOC system will improve traffic managementin urban areas and reduce whatis known as "agitated
traffic”, traffic caused by drivers circulating and looking for a place to park. Reducing the volume of agitated traffic
will allow for a substantial improvement in circulation fluidity in urban areas and thus contribute to effective
reductions in pollution and an increase in citizen satisfaction.
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Aparcamientos via Internet

Diseian unsistema que informa alos conductores delas plazas libres enla calle

La UAB desarrolla unos
dispositivos que
transmiten através de la
RedydelosGPSla
presenciaonode
vehiculos en la zona

:: EFE

BARCELONA. Dar vueltas por la
vias de la ciudad buscando un hue-
co donde dejar el coche tiene los
dias contados, si finalmente se co-
mercializa un proyecto desarrolla-
do porun grupo de investigadores
de la Universidad Auténoma de Bar-
celona (UAB) y que actualmente se
encuentra en pruebas.

El sistema, que informa a los con-
ductores de los aparcamientos li-
bres de las zonas verdes y azulesen
superficie, cuenta con un disposi-
tivo emisor de datos que se coloca
en las plazas y que detecta la pre-
sencia o no de vehiculos en el pun-
to delimitado por la pintura.

Estos emisores transmiten los
datos a un servidor de Internet, des-
de donde se distribuye la informa-
cién a los diferentes dispositivos
interconectados con el servicio de
informacion. «Desde Internet los
datos se transmiten a los aparatos
correspondientes, via web o a los
dispositivos GPS, de modo que el
conductor es guiado a las plazas de
aparcamiento libres mas cercanasn,
ha explicado el gerente de la em-
presa WorldSensing, Ignasi Vilajo-
sana. Esta compafiia, junto con el
Centro Tecnoldgico de Telecomu-
nicaciones de Catalufia han parti-
cipado en el proyecto, que fue pre-
sentado ayer en el campus de la Au-
tonoma de Barcelona.

Elsistema estd pensado de mo-
mento para plataformas web, es de-
cir, desde ordenadores, «smartpho-
nesy o dispositivos GPS que tengan
conexion a Internet y que puedan
conocer en tiempo real cudl es el
estado de las calles mas cercanas a
suemplazamiento, con una locali-
zacion del vehiculo también en
tiempo real. «El principal proble-

ma que nos encontramos fue la dis-
tancia que teniamos que cubrir en-
tre la plaza de aparcamiento y los
dispositivos receptores de los usua-
rios, y optamos por un sistema que
conectaba los emisores de las pla-
zas entre si para acercar la informa-
cion al punto de difusiény, ha ex-
plicado el investigador del Centro
Tecnolégico de Telecomunicacio-
nes de Catalunya Mischa Dohlet.

La baja conectividad se debe a
que los dispositivos emisores se ins-
talan bajo tierra, como las balizas
luminosas de las rotondas, y esto
disminuye su capacidad de envio
de datos.

Se calcula que el sistema puede
reducir en al menos cinco minutos
el tiempo que invierte un conduc-
tor ala hora de buscar aparcamien-
to, lo que supondria una reduccién
de unas 400 toneladas de diéxido
de carbono anuales.

Aunque en periodo de pruebas,
varios ayuntamientos, como el de
Barcelona o el de Sabadell (Barce-
lona), ya han mostrado su interés
para llevar a cabo pruebas piloto en
sus ciudades.

Unico e innovador

Se trata de un sistema innovador
que no existe en ningun otro pais,
y que mejora el que se encuentra
en San Francisco, pensado basica-
mente para el pago del uso de las
plazas de aparcamiento al aire libre.

El mecanismo abre nuevas puer-
tas y mercados, como la posibilidad
de incorporar el pago directo, me-
jorando al de Estados Unidos a tra-
vés de la conexién via operador mé-
vil, que requeriria un acuerdo con
algunas de las empresas que actual-
mente operan en el pais.

El proyecto ha costado 400.000
euros y su instalacién supone una
inversién de unos 170 euros por pla-
za de aparcamiento, que por otra
parte los ayuntamientos podrian
recuperar en dos afios gracias a un
incremento de la estancia de los
vehiculos en las plazas de pago al
tener que invertir menos tiempo
buscando aparcamiento.

El sistema detecta los aparcamientos libres en superficie. :: sur
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Disenan un sistema que localiza
las plazas de aparcamiento libres

El Ayuntamiento de Sabadell se interesa por este mecanismo de la UAB

Investigadores de la UAB han disefiado un sis-
tema que localiza plazas libres de aparcamiento
en la calle y guia al usuario hasta la proxima. El
Ayuntamiento de Sabadell ya se ha interesado.

|. LOPERA

tUn equipe de investigado-
res del Departament de Tele-
comunicacié i Enginyeria de
Sistemes de la UAB, en la
Escola d'Enginyeria, encabe-
zados por José Ldpez Vicario
y Antoni Morell ha participado
en ei desarrollo de un nuevo
sistemna gue localiza plazas de
aparcamiento iibres en la calle
y guia al usuario hasta la mas
cercana, reduciendo el tiempo
que invierte en buscar estacio-
namiento.

Estd pensado para zonas
urbanas y plazas de page, o
gue permitirfia  amortizar el
coste de instalacién, presu-
puestade en 400 mil euros y
en unes 170 euros por cada
plaza, Asi pues, se sufragaria
en un par de anos. Por elio,
ayuntamientos como  Saba-

dell, Barcelona o Matardé se
han mostrado interesados en
el proyecto, todavia en fase de
prueba. Ha sido disefiado por
un consorcic donde también
participan la empresa World-
Sensing (fider del consorcio) y
€l Centre Tecnoldgic de Teleco-
mitnicacions de Catalunya.

El sistema consiste en una
red de sensores sin hilos
capaces de detectar plazas de
aparcamiente libres en exte-
riores y fabores de localizacion
de vehicuios con un sistema

alternativo al GPS, y més pre- .

ciso que éste en zonas urba-
nas.

Con esta plataforma es
posible localizar y guiar a los
conductores hacia las plazas
de aparcamiento disponibies
dentro del drea de interés.

Los sensores de la red se
sitian en el pavimento de la

catle, juste a centro de las
4reas azules y verdes que
detectan si estd o no ocupada,
y transmiten la informacion,
mediante intermnet, a un servi-
dor centrai, Este servidor las
procesa y ias envia a paneles
informatives situados en ia
caile que muestran ia informa-
cion del estade de ocupacion
de la zona en tiempo real. Se

NORMA VIDAL (ACN

£l conductor podra consultar las plazas libres por internet

ha utilizade téenicas de comu-
nicacién avanzadas.

La plataforma de sensores
localiza, a su vez, a 10s usua-
rios gue buscan aparcamiento,
de manera gue se puede ofre-
cer un servicio personatizado.
En concreto, los investigado-
res de la UAB han disefiado
un navegador portdtil para el
usuaric, Hamado ARID Naviga-

tor, que aprovecha las sefales
de comunicacidn, propias de
{a red de sensores, para posi-
cionarse dentro del entorne
urbano. Una vez el vehiculo
es localizado, el navegador se
comunica con el servidor cen-
trai de Xaloc para conocer ei
nimerc de plazas fibres en la
Zona y su ubicacion, y muestra
teda la informacgion al usuario.

Mejor gue el GPS

La tecnologia de posiciona-
miento y de locaiizacidn es
totalmente nueva y ofrece
grandes ventajas respecto a
navegadores convencionales
basados en GPS, como son
una localizacion mds precisa
en #reas urbanas, un tiempe
de posicionamiento mas re-
ducido v mejor cobertura de!
servicio.

Xaloc mejorara 1a gestion det
trafico disminuyendo lo que
ios expertes llaman «trafico de
agitacién», es decit, los vehi
culos que circulan sin rumbo
especifico buscando un lugar
donde aparcar. Una disminu-
cibn de! volumen del trafico
de agiacifn mejorard la fiui-
dez de ia circulacion de forma
sustancial en zonas urbanas
para contribuir a una reduc-
cion efectiva de la contamina-
cidn —més de 400 toneladas
de dioxido de carbono, sélo en
Barcelona— y un aumento de
ta satisfaccion del conductor w
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. ECTO | XALOC

S PR CAERTB TR ras el segundo cruce a la derecha

e EnBarcelona, los coches en busca de plaza emiten hasta 15 toneladas de CO2
¢ EIXALOC instala un sensor en cada aparcamiento, que avisa si esté libre
¢ La informacion se transmite a una pantalla o a un navegador en el vehiculo

Eva Belmonte | Barcelona

Actualizado jueves 08/07/2010 16:18 horas

En una ciudad como Barcelona, los coches en busca de aparcamiento provocan diez toneladas al dia de

CO2. Sial perjuicio ecolégico le sumamos el impacto en la salud mental de los conductores, que dedican
entre 10 y 15 minutos al dia a esta engorrosa tarea, las rondas en busca de plaza se convierten en un mal
endémico de las grandes ciudades. Un proyecto de la Universitat Autonoma de Barcelona (UAB) le

hace frente presentando el primer sistema para localizar aparcamientos en plena calle.

Desarrrollado por la UAB, la empresa WorldSensing y el Centre Tecnologic de Telecomunicacions de
Catalunya (CTTC), el XALOC esta compuesto por una red de sensores que se colocan en las plazas de
parking. Cada uno de ellos envia una sefial -libre/ocupado- a un servidor que coloca los inputs en un
mapa de la ciudad. Esta valiosa informacion se visualizaria en pantallas luminosas que indiquen el camino a
seguir a los conductores.

Como complemento, los investigadores de la UAB han disefiado un navegador portéatil para el coche -
ARID-, gque indica al conductor, tras lanzar al servidor su posicion, la plaza libre més cercana. "L a idea es
gue ARID se pueda usar en cualquier terminal conectada a internet, como un iPad o una
Blackberry, por ejemplo”, adelanta José Lopez Vicario, uno de los investigadores que ha liderado el
proyecto.

El sistema de sensores funciona como el de los parkings privados que iluminan en verde las plazas
libres. La diferencia sustancial de este proyecto, tal y como la explica Lopez, es que los aparcamientos
subterraneos funcionan con ultrasonidos colocados encima de los coches, un sistema imposible de
implantar en plena calle. Ademas de instalar sensores en la superficie, justo en el centro de la plaza de
aparcamiento, el XALOC permite centralizar toda la informacion. Esta red de aparcamientos, ademas,
mejora la conectibilidad del GPS, ya que funciona, advierte Lopez, ""en subterraneos y zonas de la
ciudad donde el GPS no llega™.

Aungue por el momento no se aplicara en ninguna ciudad espafiola, los responsables del proyecto han
establecido contactos con ayuntamientos como el de Barcelona. La capital catalana podria
conwvertirse, asi, en un enorme parking puntero al aire libre. Y en un descanso para el conductor de ronda.

© 2010 Unidad Editorial Internet, S.L.
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Desarrollan un sistema para localizar

plazas de aparcamiento en la calle
Universitat Autonoma de Barcelona

Investigadores de la UAB, de la empresa WorldSensing y del Centro
Tecnolégico de Telecomunicaciones de Catalunya (CTTC) han

desarrollado un sistema que localiza plazas de aparcamiento libres
en la calle y que guia al usuario hasta la mas préxima. El sistema, al

Mischa Dohler, investigador del CTTC; gue han llamado XALOC, estd basado en una nueva tecnologia de
Ignasi Vilajosana gerente de localizacién més precisa que el GPS en zonas urbanas.
WorldSensing;y José Lépez Vicario, 8/7/2010

investigador de la UAB T R

El sistema XALOC mejorara la
gestion del transito en entornos
urbanos, disminuyendo lo que

Un equipo de investigadores del Departamento de
Telecomunicacion e Ingenieria de Sistemas de la UAB , en la
Escuela de Ingenieria, dirigido por José Lépez Vicario y Antoni

los expertos [laman "transito de Morell, ha participado en el desarrollo de un nuevo sistema que
agitacion”, es decir, el transito localiza plazas de aparcamiento libres en la calle y guia al usuario
de vehiculos que circulan sin hasta la mas cercana. El sistema, llamado XALOC (Xarxes de
rumbo especifico buscando un sensors per a la gestié d’Aparcaments publics i LOCalitzacié), ha
lugar donde aparcar sido desarrollado por un consorcio en el que también participan la

empresa WorldSensing (lider del consorcio), y el Centro

Tecnolégico de Telecomunicaciones de Catalunya (CTTC),

financiado por la Agéncia de Gesti6 d’Ajuts Universitaris i de
Recerca (AGAUR) de la Generalitat de Catalunya.

El consorcio del proyecto ha desarrollado una plataforma basada en una red de sensores sin hilos capaz de
realizar tareas de deteccion de plazas libres de aparcamiento en exteriores, y tareas de localizacion de vehiculos
con un sistema alternativo al GPS, y mas preciso que éste en zonas urbanas. Con esta plataforma es posible
localizar y guiar a los conductores hacia las plazas de aparcamiento disponibles dentro del area de interés.

Los sensores de lared se sitllan en el pavimento de la calle, justo en el centro de las areas azules y verdes.
Estos sensores detectan si la plaza esta o no ocupada, y transmiten la informacién, mediante Internet, a un servidor
central. Este servidor las procesa ylas envia a paneles indicativos situados en la calle que muestran la informacion
del estado de ocupacion de la zona en tiempo real. Se han utilizado técnicas de comunicacion avanzadas para
llevar a cabo el guiado de los datos de la red.

Al mismo tiempo, la plataforma de sensores localiza a los usuarios que buscan aparcamiento, de modo que se
puede ofrecer un servicio personalizado. En concreto, los investigadores de la UAB han disefiado un navegador
portatil para el usuario, llamado ARID Navigator, que aprovecha las sefiales de comunicaciones, propias de la red
de sensores, para posicionarse en el entorno urbano. Una vez se localiza el vehiculo, el navegador se comunica
con el servidor central de XALOC para conocer el nUmero de aparcamientos libres en la zona y su ubicacién, y
muestra toda esta informacién al usuario.

La tecnologia de posicionamiento y de localizacion es totalmente nueva y ofrece grandes ventajas respecto a los
navegadores convencionales, basados en GPS, como son una localizacidn mas precisa en entornos urbanos, un
tiempo de posicionamiento mas reducido y mejor cobertura del servicio.

El sistema XALOC mejorara la gestion del transito en entornos urbanos, disminuyendo lo que los expertos llaman
“transito de agitacion”, es decir, el trdnsito de vehiculos que circulan sin rumbo especifico buscando un lugar
donde aparcar. Una disminucién del volumen del transito de agitacién permitird mejorar la fluidez de la circulacion
de manera substancial en entornos urbanos, para contribuir a una reduccion efectiva de la contaminacién ya un
aumento de la satisfaccion del ciudadano.

universia.es/.../noticia_actualidad.jsp... 1/2
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