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1 INTRODUCCIÓN 
 
 
 
 

Este capítulo pretende introducir al lector la idea principal del proyecto con 

título “Despliegue y análisis de la cobertura de una red WiMAX1 basada en IEEE 802.16-

2004”, cuales son los objetivos que se han llevado a cabo y cómo se encuentra 

estructurado. 

 

1.1 Motivación 
 

Poder estudiar y evaluar la cobertura y prestaciones de esta nueva tecnología de banda 

ancha capaz de ofrecer coberturas superiores a las de WiFi y velocidades mayores a que la 

mayoría de las líneas DSL2 ha sido la motivación de este proyecto. 

La cobertura de una sola estación base WiMAX permite dar servicio a un gran número 

de usuarios dispersos por diversas zonas hasta 40Km. Esta tecnología ya se aplica en algunas 

zonas rurales en el que establecer cobertura de otras tecnologías no resulta rentable debido a 

los elevados costes que supondrían el despliegue de la red a causa de un difícil acceso o 

debido al poco número de usuarios. 

                                                 
1 World Interoperability for Microwave Access 
2 Digital Subscriber Line 
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1.2 Objetivos 
 

El principal objetivo de este proyecto experimental se basa en realizar una campaña de 

medidas de cobertura de una micro estación base WiMAX, descrita en el capítulo 3 basada 

en la variante de acceso fijo IEEE 802.16-2004, antiguamente conocida como IEEE 802.16d 

para obtener modelos de propagación reales en diferentes escenarios. Además, este proyecto 

ha formado parte de un proyecto PROFIT aprobado por el MINISTERIO DE INDUSTRIA, 

TURISMO Y COMERCIO con referencia FIT-330210-2007-57 mencionado InterRural en el que 

participaron varias empresas (Hispasat, Telefònica I+D, Iber-X y Gigle) y la Universitat 

Autònoma de Barcelona (UAB). El proyecto InterRural consta de dos fases: 

 

- En la primera fase ya desarrollada se ha comparado la calidad que se obtiene 

de algunos servicios multimedia empleando las dos tecnologías radio WiMAX 

y WiFi 802.11a en entornos con y sin visión directa entre las antenas 

transmisora y receptora.  

- La segunda fase del proyecto prevista para el año siguiente estudiará la 

viabilidad de una tecnología acceso de banda ancha por la red eléctrica 

conocida como PLC3 Esta tecnología es capaz de ofrecer velocidades del orden 

de 100 Mbps. 

 

Para llevar a cabo este proyecto se ha realizado la instalación de una estación base (BS4) 

WiMAX 802.16-2004 a la banda de los 3.5 GHz con una sola antena omnidireccional de 10 

dBi de ganancia para las respectivas pruebas de cobertura en outdoor y una antena sectorial 

de 17.5 dBi de ganancia para pruebas de cobertura en indoor. La BS se  localiza en la esquina 

superior de la espina Q6 de la Escola Tècnica Superior d’Enginyeria (ETSE) del campus de la 

UAB. Se utiliza una topología punto-multipunto o PTMP5 para dar servicio a tres terminales 

WiMAX, también descritos en el capítulo 3. 

El primer terminal es un Self-Install de sobremesa y de pequeñas dimensiones diseñado 

para uso exclusivo en interiores de edificios con 6 antenas integradas y cobertura de 360º. Los 

otros dos terminales WiMAX necesitan el soporte de una antena externa sujeta a un mástil en 

la cubierta de un edificio, cosa que requiere los servicios de un técnico especializado. Sin 

                                                 
3 Power Line Connection 
4 Base Station 
5 Point-to-Multipoint 
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embargo en el proyecto no se han tomado medidas instalando la antena del terminal en la 

cubierta de un edificio sino que se han tomado medidas en diferentes zonas del campus a 

una altura sobre el terreno menor de 1.8m. 

En las medidas de cobertura se incluyen el throughput, la SNR, la potencia recibida y la 

potencia transmitida. Esta se muestra para los enlaces de uplink o subida (SS6->BS) y de 

downlink o bajada (BS->SS). Las medidas obtenidas han servido para obtener modelos de 

propagación empíricos en diferentes escenarios descritos en el capítulo 4.  

1.3 Organización 
 

Este proyecto esta organizado de la siguiente manera:  

El capítulo 2 es una introducción a WiMAX. 

El capítulo 3 describe los equipos que se han empleado, la estación base con sus 

antenas y los 3 terminales WiMAX. 

En el capítulo 4 se explican y se muestran los resultados de cobertura de la campaña 

de medudidas tanto en indoor como en outdoor. 

En el capítulo 5 se presenta la primera fase del proyecto InterRural. 

Y por último, en el capítulo 6 se describen las conclusiones generales de este proyecto.   

 

                                                 
6 Subscriber Station 
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2 INTRODUCCIÓN A WiMAX 
 
 
 
 

2.1 Descripción general de WiMAX o IEEE 802.16  
 

La rápida revolución de las telecomunicaciones ha permitido la aparición de 

tecnologías digitales de banda  ancha para ofrecer acceso a Internet  a velocidades 

considerables vía cable (DSL, Cable-Modem) y vía radio (3G o UMTS7). La aparición es 

debida al hecho de que cada vez hay y ha habido más organizaciones , escuelas, empresas y 

zonas residenciales donde el acceso a Internet es primordial, ya sea por temás de negocio, 

académicos o de ocio, hecho que hace que aumente la cantidad de usuarios que se quieren 

conectar. Es  por esta razón que se tuvo que aumentar el ancho de banda de los sistemas para 

poder soportar la conectividad de más usuarios a altas velocidades. No obstante, el acceso a 

Internet con estas tecnologías se abastece principalmente a zonas con una alta densidad de 

población y probabilidad elevada de frutos económicos como por ejemplo las ciudades, un 

objetivo principal de los proveedores de servicios. Esto significa que aquellos sitios con 

escasa densidad de población, apartados de la ciudad y también de las centralitas de los 

mismos proveedores, no podrán aprovechar los beneficios de las tecnologías anteriores 

debido al elevado coste del cableado. Este es el caso de las zonas rurales, por ejemplo.  

 Quizás se podría pensar que una posible alternativa para evitar el cable en la última 

milla sería el acceso por UMTS; la respuesta es que no, y esto es debido por la principal razón 

de que el coste de una BS de UMTS es mayor que la de una BS de WiMAX, Además del 

elevado precio que supone mantener licencias de bandas frecuenciales para UMTS. 

Para hacer frente a estos inconvenientes y poder proporcionar conectividad a Internet, 

principalmente en las zonas rurales, a alta velocidad, se creó en el año 1998 el grupo de IEEE 

                                                 
7 Universal Mobile Telecommunications System 
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802.16 para poder desarrollar un estándar en el que permitía desarrollar un sistema wireless 

de banda ancha basado en la topología punto-multipunto con visión directa (LOS8) en la 

banda de operación de 10 GHz-66GHz. Este estándar aceptado en Diciembre del 2001, se 

basaba en una sola portadora en la capa física y con multiplexación por división de 

frecuencia (TDM9) en la capa de control de acceso al medio (MAC10). El inconveniente de este 

estándar es la utilización de una sola portadora para la transmisión y frecuencias de 

portadoras extremadamente altas, hecho que limitaba a aplicaciones de conectividad fija. 

Con el tiempo el grupo de IEEE 802.16 produjo subsecuentemente 802.16a como un arreglo al 

estándar 802.16 para permitir aplicaciones sin visión directa en la banda de 2GHz-11GHz, 

uso de múltiples subportadoras OFDM11, topologías punto-multipunto y en malla y una 

amplia variedad de canales con diferentes anchos de banda. Estas mejoras se reflejan en dos 

nuevos estándares o revisiones del estándar original IEEE 802.16a: el estándar IEEE 802.16-

2004 conocido como WiMAX fijo (en el resto del documento se referirá a WiMAX) y el 

estándar IEEE 802.16e-2005 conocido como WiMAX móvil. Tanto una como la otra no 

requieren LOS dado que operan en bandas de frecuencias más bajas que la primera variante 

de WiMAX 802.16.  

IEEE 802.16-2004 es una de las futuras revisiones de IEEE 802.16a que opera a la misma 

banda frecuencial y también utiliza OFDM para  transmitir múltiples símbolos a usando 256 

subportadoras.  Esta variante es una especificación de IEEE 802.16d o WiMAX fijo ya que se 

creó con el objetivo de dar cobertura a emplazamientos fijos. Cuando se dice especificación 

se refiere a que IEEE 802.16d fue adoptado por WiMAX Forum, una organización que se creó 

con la finalidad de permitir la interoperabilidad entre equipos de diferentes fabricantes. 

WiMAX Forum es una organización industrial sin ánimo de lucro formada a partir de 

operadores de telecomunicaciones y compañías de componentes y equipamientos para 

certificar  y promover la compatibilidad e interoperabilidad de los productos de banda ancha 

basados en el estándar IEEE 802.16. Uno de los principales objetivos de este organismo es 

acelerar la introducción de estos sistemas en el mercado. 

La figura 2.1 muestra una de las aplicaciones de WiMAX en el que una estación base 

puede dar servicio en un distrito empresarial, en una área residencial y a vehículos en 

movimiento en su celda.   

 

                                                 
8 Line Of Sight 
9 Time Division Multiplexed 
10 Medium Access  Control 
11 Orthogonal frequeny division multiplexing 
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Figura 2.1 Aplicación de WiMAX [Abi06] 

 

IEEE 802.16e-2005 o WiMAX móvil se puede considerar como una mejora de su 

predecesor, el IEEE 802.16-2004 ya que permite dar cobertura no tan solo fija sino también 

móvil en el sentido que los usuarios móviles pueden mantener la comunicación sin que se 

perciba el cambio de asociación entre estaciones base por medio del procedimiento de 

handover. La diferencia a nivel físico entre WiMAX fijo y WiMAX móvil es el número de 

subportadoras utilizadas para modular los símbolos de información. Como ya se ha dicho, 

IEEE 802.16-2004 solamente soporta 256 subportadoras OFDM por usuario mientras que 

IEEE 802.16e-2005  ofrece un número de subportadoras hasta un máximo de 2048 que se 

pueden asignar a diferentes usuarios  mediante el esquema de acceso múltiple ODFMA12, es 

decir, el acceso al canal es por medio de unas ciertas subportadoras asignadas por la BS.  

En la tabla 2.1 podemos observar las diferencias entre los diferentes estándares 

adoptados por IEEE y por WiMAX Forum que permite la interoperabilidad entre los 

diferentes fabricantes indicando la banda de frecuencias de operación, la capa PHY (capa 

física)  a utilizar y otros parámetros.  

                                                 
12 Orthogonal Frequency Division Multiplexing Access 
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 802.16 802.16-2004 802.16e-2005 

Estado 
Completado 

Diciembre 2001 
Completado Junio 2004 Completado Diciembre 2005 

Banda de 

Frecuencia 
10GHz-66GHz 2GHz-11Ghz 

2GHz-11GHz para fijo; 2GHz-

6GHz para móvil 

Aplicación LOS fija NLOS fija NLOS fija i móvil 

Arquitectura 

MAC 
PTM13, malla PTM, malla PTM, malla 

Esquema de 

Transmisión 

Solo 1 

portadora 
256 subportadoras OFDM 

OFDM escalable (OFDMA) con 

128, 256, 512, 1024 o 2048 

subportadoras 

Modulación 

QPSK14, 

16QAM15, 

64QAM 

QPSK, 16QAM, 64QAM QPSK, 16QAM, 64QAM 

Velocidad de 

transmisión 

32 Mbps-134.4 

Mbps 
1Mbps-75 Mbps 1Mbps-75 Mbps 

Multiplexado 
Burst 

TDM/TDMA 

Burst 

TDM/TDMA/OFDM/OFDMA 

Burst 

TDM/TDMA/OFDM/OFDMA 

Duplexado TDD16 i FDD17 TDD i FDD TDD i FDD 

Anchos de banda 

de canal 

20MHz, 25 

MHz, 28 MHz 

1.75MHz, 3.5MHz, 7MHz, 

14MHz, 1.25MHz, 5MHz, 

10MHz, 15MHz, 8.75MHz 

1.75MHz, 3.5MHz, 7MHz, 

14MHz, 1.25MHz, 5MHz, 

10MHz, 15MHz, 8.75MHz 

Designación 

interfaz aérea 

WirelessMAN-

SC 
WirelessMAN-OFDM WirelessMAN-OFDMA 

Implementación 

WiMAX 
Ninguna 256-OFDM  OFDMA escalable  

Tabla 2.1 Características básicas de los diferentes estándares WiMAX[And07] 

                                                 
13 Point-To-Multipoint 
14 Quaternari Phase Shift Keying 
15 Quadrature Amplitude Modulation 
16 Time Division Duplex 
17 Frequency Division Duplex 
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2.2 Características principales 
 

En esta sección se comentan las características que hacen de WiMAX una tecnología 

robusta, fiable y adaptable a cualquier ambiente gracias a su gran número de opciones que 

ofrece y que se comentan a continuación [And07]:  

 
2.2.1 En la capa física 

 
- Capa física basada en OFDM: La capa física de WiMAX está basada en OFDM, un 

esquema que ofrece una buena resistencia al efecto multicamino (multipath) incluso 

en condiciones NLOS.  

- OFDMA: Es una técnica utilizada por WiMAX móvil para el acceso múltiple 

aprovechando la diversidad multiusuario donde cada usuario es asignado a una serie 

de subportadoras o subcanales.  

- Elevados máximos de velocidad: Gracias al conjunto de las técnicas de modulación y 

codificación adaptativa, así como de las múltiples antenas y de la multiplexación 

espacial, WiMAX permite conseguir una elevadas velocidades máximás. Por ejemplo, 

utilizando un ancho de banda  de 10MHz y el esquema de duplexado TDD con una 

tasa de 3:1 (3 tramas downlink - 1 trama uplink) la velocidad máxima en capa física 

(gross rate) es aproximadamente 25 Mbps para downlink  y 6.7 Mbps para uplink. 

- Velocidad y ancho de banda escalables: Esta característica es única para IEEE 

802.16e-2005 con el modo escalable OFDMA. Permite adaptar la velocidad con el 

ancho de banda del canal disponible. Cuanto más grande sea el  ancho de banda del 

canal, más grande será el tamaño de la FFT18 y eso implica más subportadoras habrán 

en el canal facilitando un aumento de la tasa de datos o velocidades de transmisión. 

- Modulación y codificación adaptativa (AMC19): Esta técnica es una de las 

principales características que hacen que WiMAX sea una tecnología que se adapte al 

usuario en función de un canal variante en el tiempo. Esta técnica cambia la 

modulación y/o la codificación FEC20 teniendo en cuenta la SNR instantánea que el 

receptor WiMAX recibe en un instante de tiempo. Por esto se llama adaptativa, ya 

que utiliza la mejor modulación y/o codificación para cada MAC PDU21 o subtrama 

de usuario que mejora notablemente su velocidad de información.  

                                                 
18 Fast Fourier Transform 
19 Adaptative Modulation and Coding 
20 Forward Error Correction 
21 Protocol Data Unit 
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- Soporte para técnicas de múltiples antenas: Además de OFDM y AMC para 

aumentar la tasa de transmisión, WiMAX permite incorporar antenas adicionales al 

transmisor/receptor. Concretamente, la velocidad se aumenta gracias a las técnicas 

de antenas avanzadas tales como: beamforming, codificación en espacio-tiempo 

(STC22), y multiplexación espacial.  

 

2.2.2 En la capa MAC 
 
- Retransmisiones de capa de enlace: WiMAX utiliza  una de las técnicas utilizada en 

muchas redes de ordenadores que se conoce como ARQ23. Esta herramienta permite 

retransmitir aquellos paquetes enviados al destino del cual el transmisor no ha 

recibido ninguna justificación de recepción a través del ARQ. Cada paquete 

trasmitido ha de ser reconocido por el receptor y este último ha de enviar una 

justificación de la recepción.  

- Soporte por FDD y TDD: Tanto IEEE 802.16-2004 como IEEE802.16e-2005 soportan 

duplexado FDD y TDD. TDD será el duplexado definitivo para el futuro de WiMAX 

ya que dispone de más ventajas: (1) Más eficiencia espectral ya que no son necesarias 

dos bandas de frecuencias. (2) Utilizando TDD se pueden tener enlaces asimétricos y 

por lo tanto más flexibilidad a la hora de escoger las velocidades de downlink y de 

uplink, (3) reciprocidad del canal para los dos enlaces y (4) al operar en una sola 

banda frecuencial, menos complejidad en los equipos. 

- Asignación de recursos dinámicos y flexibles para usuario: La asignación de 

recursos a los usuarios como ancho de banda en los canales de bajada y subida, es 

controlado por un programa de la estación base. Aún así, cuando existe diversidad 

multi-usuario, la asignación puede estar realizada en tiempo (TDM), en frecuencia 

(OFDM) o en espacio (AAS24). El estándar permite la asignación de los anchos de 

banda en estos tres dominios.  

- Calidad del servicio (QoS25): La capa MAC de WiMAX tiene una arquitectura 

orientada a conexión que está diseñada para soportar una variedad de aplicaciones, 

incluyendo servicios de voz y multimedia con una variedad de usuarios con 

múltiples conexiones/usuario.  QoS de WiMAX ofrece tasa de bits constante, tasa de 

                                                 
22 Space-Time Coding 
23 Automatic Retransmission Request  
24 Advanced Antenna Systems 
25 Quality-of-Service 
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bits variable, flujo de tráfico en tiempo no real, y tráfico de datos best-effort de manera 

que permite adaptarse a los requerimientos QoS de cada conexión de usuario. 

- Soporte para la movilidad: La variante de WiMAX móvil incluye una serie de 

mecanismos que permiten al usuario mantener una conectividad móvil, eficiente y 

muy robusta para aplicaciones tolerantes a los retardos, como VoIP26 especialmente 

en casos de cambio de estación base (handover27). Técnicas como estimación de canales 

frecuentes, ahorro de potencia, subcanalización de uplink y control de potencia 

también son especificados en el soporte para aplicaciones móviles. 

2.3 Descripción a nivel físico 
 

La capa física de WiMAX (IEEE 802.16-2004) está basada en multiplexación por 

división de frecuencias ortogonales. OFDM es un esquema de transmisión que permite llevar 

a cabo comunicaciones multimedia, video y datos a alta velocidad y es utilizado por una 

gran variedad de sistemas comerciales de banda ancha incluyendo DSL, Wi-Fi, Digital Video 

Broadcast-HandHeld (DVB-H), etc. Además, OFDM permite comunicaciones robustas en 

ambientes sin visión directa, con obstáculos entre transmisor y receptor que causan 

propagaciones de la señal por múltiples caminos entre el transmisor y el receptor (efecto 

multicamino).  

En este apartado se hace una breve introducción a la capa física de WiMAX [And07]. 

Se comienza con la explicación de la estructura de las tramas WiMAX, seguido de una breve 

introducción a OFDM. Finalmente se comentan brevemente las técnicas de modulación y 

codificación adaptativa y antenas múltiples (o diversidad espacial).  

 

2.3.1 Slot y estructura de trama 
 

Se llama slot a la mínima unidad de tiempo-frecuencia que asigna el sistema a un 

determinado enlace. Un slot puede contener un número entero de símbolos OFDM 

dependiente del esquema de subcanalización utilizado. Así pues, una serie de slots forman la 

región de datos del usuario. Los algoritmos de programación podrían asignar las regiones de 

datos del usuario a diferentes usuarios dependiendo de las condiciones del canal, de la 

demanda o de los requisitos de QoS. 

                                                 
26 Voice over IP 
27 Handover se refiere al proceso de cambio de estación base, es decir,  al cambio entre celdas. 
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En cambio, una trama de WiMAX está compuesta por dos subtramas: una subtrama de 

downlink  y una subtrama de uplink separadas por un intervalo de guarda tal y como se 

observa en la figura 2.2 (en el caso de TDD). Si el duplexado es FDD significa que se pueden 

enviar las dos tramas en bandas de frecuencia diferentes y por lo tanto no es necesaria una 

estructura determinada de tramas como pasa en TDD. Además, la transmisión en FDD o en 

TDD puede ser en modo full-duplex, en el que la transmisión y la recepción se efectúan 

simultáneamente o en modo half-duplex, en el que la transmisión y la recepción se efectúan 

por separado. Si la transmisión es en modo full-duplex y FDD es necesario  que el controlador 

de ancho de banda de la estación base asigne las frecuencias correspondientes a las dos 

tramas; esto no pasa en modo half-duplex [IEEE04].  

La variante de IEEE 802.16-2004 utiliza FDD y la variante de IEEE 802.16e-2005 utiliza 

TDD. De todas maneras, la tendencia al futuro es utilizar TDD porque dispone de las 

ventajas que ya se han comentado en el apartado anterior 

La figura 2.2 muestra la estructura de trama TDD para la variante de WiMAX fijo y la 

figura 2.3 muestra la estructura de trama TDD para la variante de WiMAX móvil.  

 

 
Figura 2.2 Estructura de trama TDD  para WIMAX fijo  [IEEE04] 
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Figura 2.3 Estructura de trama TDD para WiMAX móvil  [And07] 

 

Se puede observar que una trama TDD empieza con un preámbulo de downlink (DL) 

que se utiliza para finalidades en la capa física, como por ejemplo sincronización de 

frecuencia y estimación inicial de canal. El preámbulo de downlink es seguido por la cabecera 

de control de trama (FHC28). Esta cabecera especifica la información de configuración de la 

trama tal como: la longitud de los mensajes MAP, el  esquema de  modulación/codificación 

y las subportadoras utilizables. La cabecera FHC es seguida por uno o múltiples bursts que 

son transmitidos por diferentes esquemas de modulación y codificación. Cada burst se asigna 

a un usuario y es por esta razón que se tienen esquemas AMC diferentes.  Además, cada 

burst es transmitido según un determinado perfil asignado para el mensaje MAP y un 

número entero de símbolos OFDM. Ya que los mensajes MAP tiene información crítica que 

necesita llegar a todos los usuarios, éstos se transmiten a baja velocidad con BPSK  y una tasa 

de codificación 1/2. En el caso de WiMAX móvil  y en el de muchos usuarios que utilicen 

aplicaciones que requieran paquetes de tamaño pequeño (ej:VoIP), el sistema puede 

opcionalmente utilizar submensajes MAP y enviarlos a los diferentes usuarios a velocidades 

de transmisión elevadas. 

 El perfil y la localización del  primer burst de downlink  se especifican en el prefijo de la 

trama de downlink (DLFP29) que forma parte de la cabecera de control de trama [And05]. 

                                                 
28 Frame Control Header 
29 Downlink frame prefix 
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La estimación del canal inicial, obtenida del preámbulo, puede ser utilizada para el 

seguimiento adaptativo del canal utilizando subportadoras piloto incrustadas en el símbolo 

OFDM. Desde que la duración de cada trama WiMAX es corta (1-2 ms) en el caso de WiMAX 

fijo la estimación adaptativa del canal se puede omitir debido a que se considera que el canal 

no varía mucho en la duración de la trama. [And05]. 

Como se puede observar en la figura 2.3 una subtrama downlink consta de múltiples 

bursts de diferentes usuarios, en una topología PTM. WiMAX es una tecnología flexible a 

nivel de trama ya que permite que las tramas sean de longitudes variables (entre 2-20ms) y 

también los bursts, los cuales pueden contener paquetes de tamaño fijo o variable, 

provenientes de las capas superiores. No obstante, y por temás de interoperabilidad,  los 

equipos WiMAX están preparados para soportar tramas de solo 5ms. En el caso de la 

subtrama uplink, aparte de incluir la información de los diferentes usuarios en cada uno de 

los bursts, incluye dos porciones reservadas para temás de gestión: el CR (Contenion Region) y 

el CBR (Contetion for Bandwich Request). La región de contención puede ser utilizada para 

ajustamientos de lazo cerrado de potencia, tiempo y frecuencia. Además, puede ser utilizada 

para cuando la cantidad de datos a enviar es demásiado pequeña como para justificar la 

petición de un canal dedicado. La subtrama uplink tiene dedicado un canal de indicador de la 

calidad del canal (CQICH) localizado entre el canal de sincronización (ranging) y los bursts de 

tráfico para enviar la estimación de la calidad del canal a la BS. 

WiMAX permite incorporar preámbulos más frecuentes dentro de la trama para 

aumentar la fiabilidad cuando el terminal móvil circula a velocidades altas (ej: 150 Kmp/h). 

 

2.3.2 Multiplexación por división de frecuencias ortogonales 
 

La palabra multiplexar en comunicaciones significa agrupar un conjunto de señales y 

enviarlas por un medio. Si cada uno de las señales se envía con portadoras de frecuencias 

diferentes se llama multiplexación por división de frecuencias o FDM30. La idea general de 

OFDM, en el caso  particular de FDM, es dividir un símbolo de período Ts y ancho de banda 

Bs en L subsímbolos de período LTs, y ancho de banda Bs/L y enviarlos en paralelo por el 

canal de comunicación, previamente modulados por una subportadora OFDM. Es por eso 

que OFDM también se conoce como modulación multiportadora. ¿Pero por qué se hace esto? 

Todo el mundo sabe que la propagación por un canal de comunicaciones cualquiera no es de 

camino directo sino que, debido a obstáculos entre transmisor y receptor, la propagación será 

                                                 
30 Frequency Division Multiplexing 
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multicamino. Dicho de otra manera las señales en recepción que provienen del transmisor se 

verán afectadas en amplitud y fase. Esto significa que en algún momento el receptor recibirá 

réplicas de las señales transmitidas por el receptor. Cada una de las señales llegará al 

receptor con un determinado retardo introducido por el canal. Cada una de las señales llega 

al receptor con un cierto retardo τ introducido por el canal, que en sistemas de banda ancha 

el canal suele ser selectivo en frecuencia. Un canal de comunicaciones se considera selectivo 

en frecuencia cuando el retardo τ introducido (delay spread) al símbolo enviado es superior al 

período de símbolo Ts. Dicho de otra manera, si se considera H(f) la respuesta frecuencial del 

canal, este será selectivo en frecuencia cuando la diferencia en amplitud entre dos 

frecuencias consecutivas sea superior a un umbral establecido, que normalmente es de 3dB: 

 

         H(fi)  H(fi+1)    (2.1) 

 

Se define el ancho de banda de coherencia como la diferencia entre aquellas 

frecuencias en las cuales el canal se puede considerar flat fading: Bc = |fj – fj+1 | y por lo tanto, 

el canal afectará casi igual a todas las frecuencias de símbolo o símbolos que se envíen.  

Por lo tanto, si el canal es selectivo en frecuencia significa que la probabilidad de 

aparecer ISI31 es alta La ISI aparece en canales fading cuando la duración de cada símbolo 

retardado un tiempo diferente se ensancha sobreponiéndose con otros símbolos posteriores o 

anteriores.  

Para combatir la ISI en un canal selectivo en frecuencia es necesario que el retardo τ < 

Ts o que Bs < Bc. Es decir, en el dominio temporal que el retardo del canal introducido a los 

símbolos sea el menor posible para evitar ISI y en el dominio frecuencial que el ancho de 

banda de cada subsímbolo que envía sea inferior al ancho de banda de coherencia del canal 

permitiendo que cada  símbolo experimente un canal invariante en el tiempo. Esto es lo que 

hace  OFDM y por eso envía en paralelo más de un subsímbolo. 

La figura 2.4 compara el espectro de FDM con el espectro de OFDM con un total de 9 

portadoras o canales. 

 

                                                 
31 Intersymbol Interference 
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Figura 2.4 Comparación entre FDM y OFDM [Sha05] 

 

Para que OFDM funcione correctamente ha de mantener en cualquier momento la 

ortogonalidad entre todas las subportadoras. Matemáticamente se puede expresar la 

ortogonalidad con la siguiente expresión [Sha05]: 

0

sin 2 ·sin 2 (2 ) · 0, 1/
T

ft f t dt on T és múltiple de fπ π =∫   (2.2) 

Para mantener la ortogonalidad es necesario que el período de símbolo sea el inverso 

del espacio entre subportadoras, BSC = BW/N siendo BW el ancho de banda nominal y N el 

nombre de subportadoras. Además, la FFT (desmultiplexado OFDM en recepción) se ha de 

considerar sobre la duración del símbolo el cual cubre un número entero de ciclos de 

portadora tal y como se muestra en la figura 2.5.  

 
Figura 2.5 Tres subportadoras ortogonales mostradas separadamente 

 (en la práctica se transmite una suma de las 3) [Sha05] 
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Como ya se ha comentado, el tamaño de la FFT depende inversamente de la función de 

duración del símbolo. Si la duración del símbolo es muy grande se asegura una no ISI, pero a 

la vez las subportadoras están más cerca. Este hecho puede provocar una cierta desviación 

frecuencial, causada por la velocidad del terminal móvil (efecto Doppler) y entonces 

aparecerá la ICI o Intercarrier Interference. Las figuras 2.6 y 2.7 comparan los efectos de ICI con 

los de no ICI [Sha05]. 

Figura 2.6 Sincronización perfecta. Espectro 

OFDM sin ICI con 5 subportadoras. 

Figura 2.7 Sincronización perfecta. Espectro 

OFDM con ICI con 5 subportadoras. 

 

Existe un compromiso entre protección contra el multicamino, la desviación Doppler y 

la complejidad/coste del diseño.  

Otra posible opción para eliminar completamente la ISI es añadir intervalos de guarda 

entre símbolos OFDM en el dominio temporal más grandes que  el delay spread.  

Resumiendo en la tabla 2.2 se resumen las ventajas y desventajas de OFDM: 

Ventajas Desventajas 

Alta eficiencia espectral Sensibilidad al tiempo y errores de 

sincronización de frecuencia 

Implementación simple con IFFT en 

transmisión y FFT en recepción 

Elevado PAPR (peak-to-average power ratio) 

Baja complejidad del receptor A mayor tamaño de la FFT o duración de 

símbolo, aparición de ICI 

Adecuado para transmisión de altas 

velocidades en canales multipath fading  

 

Alta flexibilidad en términos de adaptación al 

canal. 

 

Esquemas de acceso múltiple de baja 

complejidad tales como OFDMA 

 

Tabla 2.2 Ventajas y desventajas de OFDM [Yan05 



Despliegue y análisis de la cobertura de una red WiMAX basada en IEEE 802.16-2004 
 
18 

Enfocando OFDM a WiMAX fijo, 802.16-2004 utiliza OFDM con 256 subportadoras 

fijas entre las cuales se dividen con 192 subportadoras de datos, 8 subportadoras piloto por 

temás de sincronización y estimación de canal y 56 subportadoras de banda de guarda. 

Desde que el número de subportadoras es fijo, el espaciado varía en función del ancho de 

banda nominal. Si el ancho de banda nominal aumenta, el espaciado entre subportadoras 

también aumenta provocando una reducción de la duración del símbolo. Por eso lo que se 

hace es introducir más fracciones de tiempo de guarda entre símbolos OFDM. Por ejemplo, 

en el caso de BW= 3.5MHz se acostumbra a utilizar un 25% de tiempo de guarda para 

soportar retardos superiores a 16us. 

Enfocando OFDM en WiMAX móvil, 802.16e-2005 utiliza gran variedad de número de 

subportadoras, concretamente entre 128 y 2048 subportadoras para adaptarse al ancho de 

banda nominal cuando este aumente. Es decir, el tamaño de la FFT (número total de 

subportadoras) aumenta si el ancho de banda nominal aumenta ya que el espaciado siempre 

es fijo siendo de 10.94KHz. Este espaciado, además de mantener la duración del símbolo, 

permite satisfacer los requisitos del retardo del canal y del efecto Doppler. Con un BW= 

3.5GHz, se pueden conseguir retardos superiores a 20us con el espaciado anterior. Un 

espaciado de 10.94 KHz implica que el número de subportadoras 128, 512, 1042 y 2048 

pueden ser utilizadas cuando  BW=1.25MHz, 5MHz, 10MHz y 20MHz respectivamente.  

La tabla 2.3 muestra los parámetros OFDM utilizados en WiMAX tanto fijo como 

móvil: 

Parámetro WiMAX 

Fix 

OFDM-PHY 

WiMAX 

Móvil 

OFDMA-PHY 

Tamaño de la FFT 256 128 512 1024 2048 

Nombre de subportadoras de datos 32  192 72 360 720 1440 

Nombre de subportadoras piloto 8 12 60 120 240 

Nombre de subportadoras de banda de 

guarda/nulas 

56 44 92 184 368 

Prefijo cíclico o Tiempo de guarda (Tg/Tb) 1/32, 1/16, 1/8, 1/4 

Tasa de sobremuestreo (Fs/BW) Depende del BW: 7/6 para 256 OFDM, 8/7 para 

múltiples de 1.75MHz y 28/25 para múltiples de 

1.25MHz, 1.5MHz, 2MHz o 2.75MHz 

                                                 
32 La distribución listada de subportadoras de WIMAX Mobil es para downlink PUSC (uso parcial de 
subportadora) 
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Ancho de banda de canal (MHz) 3.5 1.25 5 10 20 

Espaciado frecuencial de subportadoras (KHz) 15.625 10.94 

Tiempo útil de símbolo (μs) 64 91.4 

Tiempo de guarda asumiendo un 12.5 % de 

retardo (μs) 

8 11.4 

Duración de un símbolo OFDM (μs) 72 102.9 

Nombre de símbolos OFDM en una trama de 5 

(ms) 

69 48.0 

Tabla 2.3 Parámetros OFDM utilizados en WiMAX. Los valores en negrita se corresponden a aquellos 

de perfiles de sistema WiMAX iniciales [And07]. 

 

2.3.3 Modulación y codificación adaptativa 
 

 Una de las herramientas a parte de OFDM que permite mejorar la eficiencia espectral 

en la transmisión de símbolos sobre un canal variante en el tiempo, es la técnica de 

modulación y codificación adaptativa. La idea básica es realizar una estimación del canal de 

downlink en el receptor y enviar la estimación obtenida al transmisor a través del canal 

indicador de la calidad del canal (CQICH) que se encuentra en la trama de uplink. Lo que se 

estima básicamente es la SNR33 γ del canal que se define como la SINR recibida por el 

receptor γr dividida por la potencia de transmisión Pt que normalmente es una función de γ. 

La SINR en recepción es pues γr = Pt γ [And07]. 

 Con la SNR estimadaque recibe el transmisor es capaz de seleccionar aquella 

modulación y codificación FEC que más se adapte a las condiciones del canal. Si las 

condiciones del canal son favorables (SNR > SNRth) entonces se utiliza una constelación 

grande (altas velocidades de transmisión), se reduce la potencia de transmisión que se 

requiere (de alguna manera el transmisor también controla su potencia de transmisión) o se 

reduce el promedio de la probabilidad de error de bit (BER34). De manera contraria si las 

condiciones del canal no son favorables (SNR < SNRth) se aumenta la potencia de 

transmisión y se utiliza una constelación más pequeña (se reduce el throughput). 

 En WiMAX las bajas velocidades de transmisión se consiguen con una constelación 

BPSK y con códigos de corrección de error de bajo rate o tasa tales como los códigos 

convolucionales 1/2 o los turbo codes. Altas velocidades de transmisión se consiguen con 

64QAM y códigos de codificación de error menos robustos como por ejemplo, los códigos 

convolucionales con una tasa 3/4. 
                                                 
33 Signal-to-Noise Ratio 
34 Bit Error Rate 
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En la figura 2.8 se puede observar la relación entre la BER y la SNR así como el nivel 

umbral SNRth correspondiente a cada constelación: 2-PAM (BPSK), 4-QAM (QPSK), 16-QAM 

i una 64-QAM. 

 
Figura 2.8 Relación BER vs SNR y los correspondientes  umbrales SNR de los N esquemas de 

modulación y codificación utilizados  por AMC. [Roc07]  

 

El principal problema que se le afronta a esta técnica es la variación rápida del canal. 

Este fenómeno se ha comentado en la sección de OFDM y es debido a la movilidad del 

terminal móvil de manera que si la velocidad del terminal móvil es alta entonces la variación 

del canal será rápida. La consecuencia es que existirán más rebotes debido a los diferentes 

obstáculos en los que el terminal se encuentra (esto se conoce como fast fading) y además 

aparecerá el efecto shadowing.  

Empíricamente a velocidades superiores  a 30 Kmph con una portadora de 2.100 MHz, 

no se permite que la información de estado de canal precisa y oportuna esté disponible al 

transmisor [And07]. A velocidades inferiores el canal varía lentamente (slow-

fading+shadowing) permitiendo que el sistema pueda seguir las variaciones mientras que a 

velocidades altas solo se pueda seguir las variaciones provocadas por el efecto shadowing 

[Gol05]. 

El estimador de canal del receptor tarda un retardo ie para conseguir la SNR estimada, 

existe además un  retardo if en el canal de feedback  y el transmisor también tarda un tiempo ic 

para realizar el procesado de la señal. Si la suma de los diferentes retardos temporales ie + if + 

ic es superior al tiempo que tarda el canal en cambiar entonces se ve como la eficiencia del 
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algoritmo AMC es pobre (sin haber contado los posibles errores y/o la degradación del canal 

de feddback). 

 La figura 2.9 muestra el esquema utilizado por el método AMC. 

 

 
Figura 2.9 Modelo del sistema AMC [Gol05] 

 

En el sistema se parte de que el canal es flat fading y discreto en el tiempo donde cada 

utilización del canal corresponde a un período de símbolo Ts = 1/Bs. El canal se puede 

entender como un proceso estocástico, estacionario y ergódico que depende de su ganancia 

][ig en el instante ‘i’ con una distribución estadística p(g). El ruido n[i] es AWGN35 con 

densidad espectral de potencia N0/2.  

Se define S  el promedio de la potencia de señal transmitida, B=1/Ts como el ancho de 

banda de la señal recibida y g el promedio de la ganancia del canal. Entonces  la SNR 

instantánea recibida es ∞≤≤= ][0),/(][][ 0 iBNigSi γγ y su valor esperado es )./( 0 BNgS=γ  

Des de que g[i] es un proceso estacionario y ergódico, la distribución de ][iγ  es 

independiente de ‘i’, y se denota esta distribución por p(γ).  

Como ya se ha comentado, en transmisión adaptativa se desea estimar la ganancia de 

potencia o la SNR instantánea y adaptar la modulación y codificación adaptativa según se 

corresponde. Los parámetros más comunes a adaptar son:  

 - Velocidad de datos R[i]. Depende de la constelación con la expresión de la 

capacidad de Shannon bpsiMBiR ][log][ 2= . Si se hace 

HzbpsMBiR /log/][ 2= entonces es la eficiencia espectral de la M-ésima 

constelación. 

                                                 
35 Additive White Gaussian Noise 
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- Potencia de transmisión S[i]: En teoría la política de control de potencia a partir de 

un punto de vista de capacidad se menciona waterfilling que consistente en transmitir 

mucha  potencia en canales robustos y fiables,  y poca potencia en canales débiles y 

no fiables. En la práctica y en algunos casos puede pasar lo contrario. 

- Parámetros de codificación C[i]. 

Se define la SNR instantánea como )/(][ˆ][ˆ 0 BNigSi =γ , basada en la estimación de la 

ganancia de potencia del canal ][ˆ ig . Como que la potencia de transmisión se adapta a ][ˆ iγ  

se puede dejar en función de esta, S( ][ˆ iγ ) = S[i], es decir, la potencia que se transmite 

depende de la SNR estimada en recepción que a su vez depende de la potencia recibida en el 

instante ‘i’ definida como )./(][])[ˆ(][ 0 BNigiSi γγ =  De la misma manera que se ha llevado a 

cabo para adaptar el esquema de modulación, se puede adaptar la tasa de transmisión 

])[ˆ( iR γ = R[i] y/o los parámetros de codificación ][])[ˆ( iCiC =γ relativos a la estimación  

][ˆ iγ . La estimación ][ˆ iγ  depende de la estimación ][ˆ ig  de modo que si g[i] es estacionario y 

ergódico, su estimación también lo será y por lo tanto se pueden obviar los diferentes 

parámetros de transmisión tales como γ̂ , S( γ̂ ), )ˆ(γR i )ˆ(γC . 

La tabla 2.4 muestra los diferentes esquemas de modulación y codificación utilizados 

en WiMAX. En el canal de downlink QPSK, 16QAM y 64QAM son obligatorios tanto para 

IEEE 802.16-2004 como para IEEE 802.16e-2005; una 64 QAM es opcional para el canal de 

uplink. En cuanto a la codificación de errores o FEC, WiMAX utiliza códigos convolucionales 

combinados con los códigos Red-Solomon en el canal de downlink. El estándar también 

soporta opcionalmente turbo codes y códigos LDPC36 con una variedad de tasas.  

 Downlink Uplink 

Modulación QPSK, 16QAM, 64QAM; BPSK (opcional), BPSK, QPSK, 16QAM; 64QAM 

opcional. 

Codificación Obligatorio: CC37 de 1/2, 2/3,3/4, 5/6. 

Opcional: CTC38 de 1/2, 2/3, 3/4, 5/6; códigos de 

repetición de 1/2, 1/3, 1/6, LDPC y RS39 

Obligatorio: CC40 de 1/2, 2/3,3/4, 5/6. 

Opcional: CTC41 de 1/2, 2/3, 3/4, 5/6; 

códigos de repetición de 1/2, 1/3, 1/6, 

LDPC 

Tabla 2.4 Esquemas de modulación y codificación suportados por WiMAX [And07] 

                                                 
36 Low-Density Parity Check 
37 Concolutional Coding 
38 Convolutional Turbo Codes 
39 Reed-Solomon 
40 Concolutional Coding 
41 Convolutional Turbo Codes 
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Para hacerse una idea de las velocidades que se pueden conseguir con los diferentes 

esquemas de modulación y codificación anteriores, la tabla 2.5 muestra las velocidades de la 

capa física para diferentes anchos de banda experimentados en versiones de WiMAX fijo y 

móvil desarrollada en el sud de Corea el año 2006 con su tecnología WiBRO. El experimento 

utilizó OFDM en topología punto-multipunto, duplexado TDD, una relación de ancho de 

banda  3:1 downlink-to-uplink, un tamaño de trama de 5 ms, un intervalo de guarda del 12.5% 

y un esquema de permutación de subportadoras (PUSC). 

 

.  
Tabla 2.5 Velocidad de datos de capa física a diferentes anchos de banca [And07] 

 

La figura 2.10 muestra como a medida que aumenta la distancia de la estación base, el  

amaño de la constelación se va haciendo cada vez menor hasta la QPSK. Esto se consigue con 

el sistema AMC descrito anteriormente. 

 

 

Figura 2.10 Modulación i codificación adaptativa [W.Ho04] 
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2.3.4 Técnicas de múltiples antenas 
 

Las velocidades conseguidas en la tabla 2.5 se consiguieron sin el uso de diversidad 

espacial utilizando múltiples antenas al transmisor o al receptor. Si se hubiera llevado a 

término la diversidad espacial, las velocidades de la tabla 2.5 podrían haber aumentado. La 

diversidad espacial, como su nombre indica, consigue mejorar la SNR de un sistema 

mediante múltiples antenas en transmisión, en recepción o en ambos sitios en ambientes con 

propagación adversa como es el caso de multipath fading. El estándar WiMAX proporciona 

soporte para implementar soluciones avanzadas con múltiples antenas para mejorar el 

rendimiento del sistema. Mediante los sistemas de antenas avanzadas (AAS42) se puede 

aumentar la eficiencia espectral y la capacidad del sistema en conjunto. Las diferencias 

técnicas existentes en los sistemas AAS son: 

 

- Diversidad en transmisión: Se entiende por diversidad en transmisión la utilización 

de dos o más antenas en transmisión y una o más en recepción. Esta técnica permite 

utilizar los esquemas de codificación de bloque espacio-tiempo o STBC43 para 

proporcionar diversidad en transmisión (o también en recepción) en el canal de 

downlink (o en el de uplink). Un caso particular de estos esquemas es el 2x1 (dos 

antenas en transmisión y una en recepción) y se conoce como códigos de Alamouti. 

Además de este caso 2x1, WiMAX también define STBC para 3 y 4 antenas de 

transmisión. Las ventajas de tener más antenas en transmisión es el aumento de la 

SNR instantánea en recepción y los inconvenientes es una disminución de la 

velocidad de los datos. 

STBC se utiliza en canales selectivos en frecuencia y casi estáticos en tiempo, es 

decir, canales casi invariantes en la duración de la trama. Por lo tanto es más útil 

cuando el terminal móvil se desplaza a velocidades lentas. No obstante, para canales 

dispersivos en frecuencia (selectivos en tiempo) o canales  fast fading se utiliza otro 

esquema similar al STBC conocido como SFBC.44 Este sistema si que se utiliza en 

casos de elevada movilidad ya que se considera que el canal varía poco en el dominio 

frecuencial cuando el retardo máximo introducido por el canal es pequeño [Yan05].  

La figura 2.11 muestra un ejemplo de STBC, donde dos flujos de datos iguales 

se envían simultáneamente mediante dos antenas en transmisión a un terminal móvil 

                                                 
42 Advanced Antenna Systems 
43 Space-Time Block Coding 
44 Space-Frequency Block Coding 
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equipado con una sola antena. Este esquema se llama MISO45  y es muy utilizado en 

sistemas celulares donde la complejidad recae en la estación base la cual ayuda a 

mantener un coste de terminal móvil bajo.  

 

 
Figura 2.11 Space-Time Block Coding STBC  [White Paper.Motorola] 

 

- Beamforming: La idea principal del beamforming consiste en aumentar la SNR en el 

receptor enfocando la energía o la máxima potencia a las direcciones deseadas, ya sea 

en transmisión o en recepción. En el caso de WiMAX, múltiples antenas pueden ser 

utilizadas para transmitir la misma señal apropiadamente ponderada para cada 

antena tal que el efecto sea enfocar el haz en la dirección del receptor y lejos de la 

interferencia, mejorando la SNR recibida. Esta técnica permite aumentar el rango de 

cobertura, la capacidad y la fiabilidad. Pero para hacer uso de esta técnica es 

necesario que el transmisor tenga una idea precisa de cómo es el canal. La estimación 

de canal es fácil en TDD ya que el canal es el mismo para downlink que para uplink 

pero en FDD se requiere de un canal de feedback  feedback.  

Las conocidas smart antenas permiten adaptar su patrón de radiación para adecuarse 

a un tipo determinado de tráfico o en entornos difíciles.   

 Un ejemplo de beamforming se muestra a la figura 2.12.  

 

                                                 
45 Multiple Input-Single Output 
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Figura 2.12 Beamforming en WiMAX [White Paper.Motorola] 

 

- Multiplexación espacial (SM46): A diferencia de los esquemas STBC, esta técnica 

aprovecha la diversidad en transmisión para enviar más de un símbolo o conjunto de 

símbolos diferentes en paralelo. No envía información redundante al mismo instante 

de tiempo, sino que envía múltiples símbolos independientes. Si el receptor también 

dispone de múltiples antenas, el conjunto de símbolos pueden ser separados 

utilizando procesado ST47. SM es una técnica potente para sistemas con múltiples 

antenas que, en un principio, aumenta la velocidad en proporción con el número de 

antenas de transmisión, des de que cada antena transporta un único flujo de símbolos 

de información. Por lo tanto, si el número de antenas de transmisión es M y la 

velocidad para cada flujo de símbolos es R, la velocidad de transmisión será M·R, 

solo en SM [IEEE Mag05]. Por ejemplo un sistema 2x2 MIMO dobla la velocidad de 

transmisión si se compara con un esquema STBC. Una tecnología que actualmente 

utiliza la multiplexación espacial es MIMO48.   

Debido a que la tecnología SM envía en paralelo múltiples símbolos 

independientes es lógico pensar que SM funciona bien bajo buenas condiciones de 

SNR ya que se asegura que la probabilidad de perder un cierto número de símbolos 

es baja. 

Una restricción importante para los receptores utilizados en multiplexación 

espacial es que el número de antenas en recepción no debe ser menor que el número 

de flujo de datos o equivalente al número de antenas en transmisión para que la 

descodificación pueda ser realizada con éxito. 

                                                 
46 Spacial Multiplexing 
47 Space-Time 
48 Multpile-Input Multiple-Output 
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La figura 2.13 muestra un esquema SM con dos antenas en transmisión y una 

antena en recepción y la figura 2.14 muestra un esquema de multiplexado espacial 

básico con tres antenas en transmisión i en recepción. Como se observa en la siguiente 

figura el transmisor envía dos flujos de datos en paralelo al receptor. De esta manera 

se aumenta la velocidad de transmisión. 

 

 

Figura 2.13 Esquema de Multiplexación Espacial-MIMO [White Paper.Motorola] 

 
 

 

Figura 2.14 Esquema de multiplexación especial básico con tres antenas en transmisión y tres en 

recepción provocando una mejora de la eficiencia espectral. Ai,Bi, Ci representan las constelaciones de 

símbolo para las tres entradas a diferentes estados de transmisión y recepción [Ges03] 
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2.4 Descripción a nivel de MAC 
 

La finalidad de la capa MAC de WiMAX es proporcionar una interfaz entre las capas 

de transporte superiores y la capa física en el modelo OSI49. La capa MAC coge los paquetes 

de las capas superiores – estos paquetes se llaman MSDUs50- y los agrupa en MPDUs51 para 

la transmisión vía radio. La capa MAC en recepción realiza el proceso inverso. La capa MAC 

de WiMAX ha estado diseñada para soportar altas velocidades de bit Además de 

proporcionar calidad de servicio similar a la tecnología ATM. Por otro lado, la MAC de 

WiMAX utiliza MPDUs de longitud  variable y ofrecen mucha flexibilidad  para permitir una 

transmisión eficiente. Por ejemplo, múltiples MPDUs de longitudes iguales o diferentes 

pueden ser agrupadas en un único burst para reducir cabecera PHY. Similarmente, múltiples 

MSDUs del mismo servicio de capas superiores pueden ser concatenados en un único MPDU 

para reducir la cabecera MAC. Además, largas MSDUs pueden ser fragmentadas  a 

pequeñas MPDUs y enviadas a través de múltiples tramas. 

La figura 2.15 muestra ejemplos de diferentes configuraciones de tramas MAC PDU. 

Cada trama MAC comienza con una cabecera MAC Genérica (GMH, generic MAC Header) 

que  contiene un identificador de conexión o CID (Connection Identifier), la longitud de la 

trama, bits para cualificar la presencia del CRC, subcabeceras, y si el payload está cifrado y si 

es así con que contraseña. El payload de las tramas MPDU puede ser un mensaje de 

transporte o de gestión. Al lado de las MDSUs, el payload de transporte puede contener 

peticiones de ancho de banda o peticiones de retransmisión. El tipo de payload de transporte 

es identificado por la subcabecera que le procede. La capa MAC de WiMAX también soporta 

ARQ, que puede ser utilizado para peticiones de retransmisión de MSDUs no fragmentados 

y fragmentos de MSDUs. La longitud máxima de la trama es de 2047 bytes que se 

representan con 11bits en la cabecera GMH. 

 

                                                 
49 Open Systems Interconnection 
50 MAC Service Data Units 
51 MAC Protocol Data Units 
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Figura 2.15 Ejemplos de varias de tramas MAC PDU [And07] 
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3 ARQUITECTURA DE LA RED        
WiMAX  

 
 

 

El propósito de este capítulo es dar a conocer al lector el tipo de arquitectura WiMAX 

empleada en el proyecto así como una descripción de los componentes que la forman. Antes 

de empezar a describir los equipos de la red WiMAX desplegada se comenta la razón por la 

que se optó por el estudio y análisis del estándar de WiMAX fijo en lugar del estándar de 

WiMAX móvil. En el momento que se adquirió la estación base WiMAX, en  septiembre del 

2007 existían solamente dos proveedores de WiMAX en España: Alvarion y Alcatel Lucent. 

Alvarion ofrecía WiMAX fijo y Alcatel Lucent WiMAX móvil siendo ambos equipos en 

banda licenciada. La razón por la que se optó por el WiMAX fijo era: 

 

1. El precio del dispositivo que permitía hacer handover en WiMAX móvil era de 

200.000 €, superior a la subvención del MINISTERIO DE INDUSTRIA, TURISMO 

Y COMERCIO. 

2. Se querían hacer pruebas en un entorno rural aislado. 

 

En la Figura 3.1 se muestra la arquitectura del sistema WiMAX utilizado basado en el 

estándar IEEE 802.16-2004 con tres terminales CPE52 y la estación base BreezeMAX 3000. 

                                                 
52 Customer Premise Equipment 
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Figura 3.1 Arquitectura WiMAX 802.16-2004 desplegada 

  
Los equipos que aparecen en la figura 3.1 son los siguientes: 
 

- Estación Base BreezeMAX 3000 de Alvarion con dos antenas: sectorial 14.5 dBi y 
omnidireccional de 10 dBi. 

- Terminal WiMAX CPE o SU53. Los terminales WiMAX de abonado que se 
disponen son: 

 Si -CPE. Este terminal lleva 6 antenas integradas por lo que en 
principio no necesita conexión a una antena externa. 

 IDU-CPE-1D2V SIP-RJ. Este terminal WiMAX hace de puente entre 
la red LAN del usuario y la red radio del WISP. A diferencia del Si-
CPE necesita una unidad radio outdoor o ODU que hace de interfaz 
entre el medio guiado (cable) y el medio radiado. Se tienen dos 
terminales CPE-ODU:  

o PRO-CPE-ODU-SA: Incorpora una antena integrada 
con polarización V/H de 17 dBi de ganancia. 

o PRO-CPE-ODU-SE: Se conecta a una antena externa. 
En el proyecto se emplea una omniazimutal de 2 dBi 
con polarización VV. 

                                                 
53 Subscriber Unit 
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A continuación se describen cada uno de los equipos. 

3.1 Descripción de la estación base WiMAX  
 

BreezeMAX es una tecnología diseñada por la empresa Alvarion basada en el estándar 

de WiMAX IEEE 802.16/ETSI HIPERMAN para poder ofrecer un gran múltiple de servicios 

a bajo coste y alta velocidad a través de un medio radiado a un conjunto de organizaciones 

clientes (clientes en zonas empresariales, en zonas residenciales, en zonas educativas, etc) 

que forman una red wireless de área metropolitana (WMAN). La banda licenciada que 

ofrecen los equipos BreezeMAX está comprendida en 3-4 GHz. Existen en concreto 3 bandas 

frecuenciales: 3.3 GHz, 3.5 GHz y 3.6 GHz.   

 
 

 

 

 

 

 

 

La micro estación base uBST provee toda la funcionalidad necesaria para comunicarse 

con sus SUs o unidades suscritoras y conectarse al backbone del ISP. La μBST soporta full 

duplex, alta potencia y múltiples portadoras (debido a la modulación multiportadora de 

OFDM). La μBST ha sido diseñada para proporcionar una alternativa a la estación base 

modular BreezeMAX y una solución de bajo coste en lugares donde el número de unidades 

suscritoras esta limitado y solo uno o dos sectores son necesarios (i.e: áreas de comunidades). 

La estación base modular puede ofrecer hasta siete sectores. La μBST está formado por la 

unidad micro estación base indoor y la unidad radio outdoor. La unidad indoor provee toda la 

funcionalidad necesaria para poder dar servicio a dos sectores. Existen dos modelos: uno que 

se alimenta de AC (110 o 220 V) y el otro que se alimenta en DC (-48 V).  

Las funcionalidades de la μBST incluyen: 

- Conectividad Ethernet al backbone a través de una interfaz de red 100BASE –T.  

- Clasificación del tráfico y iniciación de establecimiento de conexión. 

- Conmutación de datos basados en políticas. 

Figura 3.2 Micro Estación Base BreezeMAX  Alvarion 
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- Agente SNMP centralizado para gestionar la micro estación base y todos sus SUs 

registrados. Este agente permite una gestión en banda (In-Band) y fuera de banda (Out-

Of-Band). Esta última se realiza a través de una interfaz de red 10/100 BASE-T.  

- Soporte para configuración local, monitorización y debugging a través de una interfaz 

serie RS-232.  

 

Terminal outdoor de la estación base AU-ODU (Antena Unit-Outdoor Unit) 

 
La unidad μBST indoor se conecta a los SUs vía radio a través de la unidad radio 

outdoor o AU (Acces Unit) – ODU. La unidad AU-ODU de la μBST es idéntica a la de la 

estación base BreezeMAX modular, es una unidad radio multiportadora full duplex que se 

conecta a una antena externa (ej: una antena sectorial). La unidad radio outdoor ha sido 

diseñada para soportar una ganancia elevada de sistema, robustez a interferencias utilizando 

una alta potencia de transmisión y baja figura de ruido. El AU-ODU soporta un ancho de 

banda hasta 14 MHz, permitiendo posibilidades futuras tales como un aumento de la 

capacidad a través del uso de un multiplexor o de canales anchos (e.j 7/14 MHz). 

La conexión entre la unidad indoor y la unidad outdoor AU-ODU de la μBST se realiza a 

través de un cable de FI (frecuencia Intermedia) que transporta señales datos en modo full 

duplex, señales de control, de gestión así como de potencia (48 VDC) y además un reloj de 64 

MHz de referencia para la sincronización. Las frecuencias de Tx y Rx son 240 MHz y 140 

MHz respectivamente.  

Existen dos versiones del AU-ODU:  

- AU-ODU (estándar): Potencia de salida máxima de 28 dBm. 

- AU-ODU-HP (High Power ODU): Potencia máxima de salida de 34 dBm. El AU-

ODU-HP esta actualmente disponible en las bandas de 3.5 GHz (3.5a y 3.5b).  

En el proyecto se utiliza la versión AU-ODU estándar de la figura 3.3. La antena 

utilizada para las respectivas pruebas y demostraciones sobre WiMAX en outdoor o exteriores 

es una antena omnidireccional de 10 dBi de ganancia que se muestra en la figura 3.4.   

Además de la antena omnidireccional para obtener medidas en  exteriores también se 

han empleado una antena sectorial para realizar medidas en indoor o interiores. Las figuras 

3.5 y 3.6 muestran la antena sectorial de 14.5 dBi de ganancia. 
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Figura 3.3 Unidad de antena outdoor, AU-ODU Figura 3.4 Antena omnidireccional de 

10 dBi 

  
Figura 3.5 Antena sectorial de 14.5 dBi. Vista frontal Figura 3.6 Antena sectorial de 14.5 

dBi. Vista trasera 
 

En la tabla 3.1 se resume las especificaciones radio de la μBST. 

 
Ítem Descripción 

Banda Uplink (MHz) Downlink (MHz) Frecuencia 

AU-ODU-3.5b 3450-3500 3550-3600 

Modo de operación Full duplex, FDD 

Ancho de banda de 

canal 

 3.5 MHz,  

 1.75 MHz 
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Resolución de la 

frecuencia central 
0.125 MHz 

Puerto de Antena 

(AU-ODU) 
Tipo N, 50 Ohm. 

Máxima potencia de 

entrada al puerto de 

antena (interfaz 

ODU) 

-50 dBm antes de saturación, -17 dBm  antes de deterioro 

Rango de potencia 

de salida al puerto 

de antena (interfaz 

ODU) 

13 dBm-28 dBm. 

Modulación Modulación OFDM 256. 

BPSK, QPSK, QAM16 y QAM64 

FEC Codificación Convolucional: 1/2, 2/3 y 3/4  

Throughput bruto: 

downlink/uplink 

Máximo: 12 Mbps, con QAM 64 3/4. 

Mínimo: 1.25 Mbps con BPSK 1/2 

Máximo número de 

SUs 

250 usuarios 

Multiplexado TDMA 

Tabla 3.1 Especificaciones radio de la micro estación base BreezeMAX 3000. 
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3.2 Descripción de los equipos WiMAX de abonado (CPE) 
 
En el presente proyecto se disponen de dos tipos de terminales WiMAX de abonado:  

- Un terminal WiMAX de fácil instalación para el cliente. Este terminal  no requiere 

de orientación a la estación base, con sus 6 antenas integradas, por lo que en 

principio no se requiere servicio técnico especializado. Es un terminal ligero y 

portable en un entorno doméstico. La nomenclatura del terminal es Si-CPE. 

- Un terminal WiMAX conectado a una antena externa que se orienta a la dirección 

de la estación base. Por lo tanto no es un terminal portable a diferencia del Self 

Install sino que tiene que permanecer en un emplazamiento fijo. Por el hecho de 

que se requiere una alineación de la antena con la estación base se requiere de un 

servicio técnico especializado con sus medidores de campo adecuados. La 

nomenclatura de este terminal es IDU-CPE-1D2V SIP-RJ. Las unidades outdoor de 

estos equipos WiMAX están pensados para estar ubicados en la parte más alta del 

edificio, soportados con un mástil. 

3.2.1 Terminal WiMAX portable Self- Install CPE 
 

El terminal WiMAX Si-CPE es un SU diseñado para aplicaciones indoor. El Si-CPE 

incorpora un chip WiMAX Pro/Wireless 5116 de Intel.  Se encuentra actualmente disponible 

en la banda de 3.5 GHz, soportando frecuencias de downlink desde 3499.5 MHz con 100 MHz 

de separación duplex. El terminal Si incluye 6 antenas integradas que proporcionan una 

cobertura de 360o además de un puerto de conexión a una antena externa específica cuyas 

especificaciones y características se hallan en la tabla 3.3. 

El terminal WiMAX Si es una plataforma eficiente para una gran variedad de servicios 

de banda ancha y conexiones de datos a la estación base. Incorpora la funcionalidad de 

bridge, clasificación y configuración del tráfico y se conecta a un equipo de usuario a través 

de un puerto Ethernet  10/100 BASE-T suportando hasta 512 direcciones MAC.  

Si-CPE ofrece diferentes alternativas de gestión: 

- Remotamente a través de la estación base, utilizando un programa monitor o 

SNMP como BreezyLITE. 

- Localmente a través del puerto Ethernet, utilizando Telnet para acceder al 

programa monitor de instalador. 



Despliegue y análisis de la cobertura de una red WiMAX basada en IEEE 802.16-2004 
 
38 

- Utilizando un PC o una PDA con un navegador web http para acceder al servidor 

de configuración incorporado. 

 

 
Figura 3.7 Terminal 

WiMAX indoor Si-CPE 
 

Las especificaciones radio del Si-CPE se muestran en la tabla 3.2 mientras que las de la 

antena externa se indican en la tabla 3.3  

 

Ítem Descripción 

Frecuencia Uplink (MHz) 3399.5-3500 

 Downlink (MHz) 3499.5-3600 

Modo de operación FDD, Half duplex. 

Ancho de banda de canal  1.75 MHz 

  3.5 MHz 

Resolución de la frecuencia 

central 

 0.125 MHz 

Antenas Integradas Array de conmutación de haz compuesto de 6 antenas de 60o 

de azimut y 9 dBi de ganancia 

Puerto de antena externa SMA, 50 Ohm 

Máxima potencia de entrada -20 dBm antes de saturación  



Capítulo 3. Arquitectura de la red WiMAX  
 

39

(al puerto de antena) 0 dBm antes de deterioro 

Rango de potencia de 

transmisión (al puerto de 

antena)   

[-24 dBm, 22 dBm] usando 1 dBm de resolución. 

Potencia de Tx máxima: 22 dBm +/- 1 dB máximo. 

Rango dinámico ATPC: 46 dB 

Modulación  Modulación OFDM 256 

BPSK, QPSK, QAM16, QAM64  

FEC Codificación Convolucional 1/2, 2/3, 3/4. 

Throughput bruto: 

downlink/uplink 

Máximo: 12 Mbps, con QAM 64 3/4. 

Mínimo: 1.25 Mbps con BPSK 1/2 

 Tabla 3.2 Especificaciones radio del terminal WiMAX SI-CPE 

 

 

 

Ítem  

Ganancia (excluyendo el cable) 12 dBi 

Polarización  Lineal-Vertical 

Ancho de haz 75o Horizontal, 16o Vertical 

Dimensiones (cm) 33x9.3x2.1 

Peso (g) 190 

Tabla 3.3  Especificaciones de la antena externa para el Si-CPE 
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3.2.2 Terminal WiMAX de emplazamiento fijo (IDU-CPE-1D2V SIP-RJ) 
 

El terminal WiMAX IDU-1D2V es un equipo para aplicaciones indoor pensado para 

poder ofrecer a los usuarios una combinación de telefonía IP o VoIP54 y servicios de datos de 

banda ancha. Este terminal dispone de una interfaz Ethernet y dos interfaces POTS55 para 

servicios de voz primarios y cuyos tipos de conectores pueden ser: RJ-11 o un terminal block. 

El IDU-1D2V o IDU-DV es un gateway de voz y se rige sobre los protocolos estándares H.323 

y SIP56 para el establecimiento de llamadas IP. Soporta codecs de habla estrechos 

(comprimidos) o anchos (descomprimidos), supresión del silencio, cancelación del eco de 

línea y parámetros de telefonía regionales. Los servicios de clase 5 tales como llamada en 

espera, desvío de llamada y llamada a 3 también están soportados. 

El VG-1D2V soporta además de telefonía-IP, acceso a Internet o a cualquier otro 

servicio basado en Ethernet. La unidad puede estar instalada detrás de un router/NAT ya 

que tiene soporte para NAT57 permitiendo que los paquetes de voz puedan alcanzar al 

GateKeeper para inicializaciones de llamadas bidireccionales. El voice gateway puede manejar 

hasta 16 VLANs58 simultáneamente permitiendo ofrecer diferentes servicios a usuarios 

finales que se encuentren conectados detrás del terminal.   

Dos unidades IDU-DV pueden ser conectadas en cascada proporcionando de esta 

manera 4 líneas POTS independientes sobre una sola unidad radio outdoor. El terminal IDU-

DV puede ser administrado y supervisado remotamente y/o localmente utilizando SNMP o 

un servidor web integrado.  

El terminal WiMAX CPE-IDU-DV soporta el protocolo DRAP59 que es un protocolo 

basado en IP/UDP entre el IDU-DV i un servidor DRAP que es capaz de proporcionar de 

forma dinámica asignación de recursos (ej: ancho de banda) en realizaciones de llamadas. 

Mediante el uso de este protocolo no es necesaria una configuración específica en el IDU-DV 

ya que el protocolo proporciona un mecanismo de autodescubrimiento de forma que el IDU-

DV puede localizar y registrarse con el servidor DRAP. 

 

                                                 
54 Voice Over IP 
55 Public Old Telephony System 
56 Session Initiation Protocol 
57 Network Address Translation 
58 Virtual Local Area Network 
59 Dynamic Resource Allocation Protocol 
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Figura 3.8 Terminal WiMAX indoor IDU-1D2V 

 
 

El IDU-DV se comunica con la unidad outdoor BreezeMAX 

PRO-CPE y le proporciona potencia (54 VDC) sobre un cable de 

categoría 5 con conector RJ-45. La unidad ODU incluye un 

módem, cabezal RF, procesamiento de datos y una antena plana 

de 17 dBi de ganancia o una conexión a una antena externa, tal y 

como se describe en la tabla 3.4. El CPE-ODU proporciona 

conexiones sirviendo como una plataforma eficiente para 

servicios de banda ancha. El ODU proporciona conexión a la 

estación base, funcionalidad como bridge, clasificación y 

configuración del tráfico. Esta unidad outdoor puede tener una 

antena directiva incorporada como es el caso del modelo SA o 

debe conectarse a una antena externa como es el caso del modelo 

SE. En el modelo SE, la antena que se ha utilizado es una omniazimutal de 2.5 dBi de 

ganancia y cuya forma redonda se muestra en la figura 3.9 junto con la unidad outdoor del 

modelo SA. 

La tabla 3.4 muestra las especificaciones de la unidad outdoor PRO-S-CPE. 

Figura 3.9 Unidades outdoor. 
PRO-S-CPE, modelos SA y SE. 
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 Ítem Descripción 

Uplink (MHz) 3399.5-3500 Frecuencia 

Downlink (MHz) 3499.5-3600 

Modo de operación FDD, Half duplex. 

Ancho de banda de canal  1.75 MHz 

 3.5 MHz 

Resolución de la frecuencia 

central 

0.125 MHz 

Antena integrada (modelo SA) 17 dBi de ganancia, 20oAZx20oEL, polarización vertical/horizontal 

Puerto de antena (modelo SE) SMA, 50 Ohm 

Máxima potencia de entrada (al 

puerto de antena) 

-20 dBm antes de saturación  

0 dBm antes de deterioro 

Rango de potencia de 

transmisión (al puerto de antena) 

[-26 dBm, 20dBm] con 1 dBm de resolución. 

Potencia de transmisión máxima: 20 dBm +/- 1 dB máximo. 

Rango dinámico ATPC: 46 dB 

Modulación  Modulación OFDM 256 

BPSK, QPSK, QAM16, QAM64  

FEC Codificación Convolucional 1/2, 2/3, 3/4. 

Throughput bruto 

downlink/uplink 

Máximo: 12 Mbps, con QAM 64 3/4. 

Mínimo: 1.4 Mbps con BPSK 1/2 

Tabla 3.4  Especificaciones radio del terminal WiMAX PRO-S-CPE 
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3.3 Interfaz de control y gestión de la red WiMAX 
 

En toda red de telecomunicaciones independientemente de la tecnología utilizada para 

sus enlaces entre nodos es absolutamente necesario el uso de alguna herramienta que se rija 

sobre un protocolo de gestión que permita una gestión fácil y eficiente. El protocolo SNMP60 

está diseñado para llevar a cabo tareas de gestión de red. Normalmente este protocolo 

interactúa con una aplicación de usuario para facilitar la gestión de una manera más cómoda. 

La aplicación de usuario puede estar basado con interfaz grafica o en modo comandos 

aunque para gestionar una red amplia como por ejemplo una WAN la mayoría de 

aplicaciones de usuario están basadas en interfaz grafica para permitir al administrador de 

red una gestión más interactiva y a veces cómoda. En el caso del proyecto en el que se lleva a 

cabo, los equipos de Alvarion (BS i SU) pueden ser gestionados/administrados localmente o 

desde la misma estación base mediante una aplicación propia de Alvarion que se conoce 

como BreezeLITE. Esta aplicación se instala en un equipo de sobremesa que se conecta al 

puerto de gestión de la estación base a través de un cable de red 100BASE-T. 

El esquema que normalmente se tiene en una arquitectura WiMAX es de uno o varios 

radioenlaces WiMAX NLOS entre el AU i el SU. En la figura 3.10 se puede ver un ejemplo de 

un radioenlace WiMAX sin visión directa entre un equipo suscriptor de abonado o CPE y la 

BS 1 además de otros radioenlaces LOS con otras estaciones base.  

 

 
Figura 3.10 Arquitectura WiMAX [Not1] 

 

                                                 
60 Simple Network Management Protocol 
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La entidad que dispone de estaciones base repartidas en una cierta área geográfica y 

que acostumbra a ser un WISP (Wireless Internet Service Provider) puede proveer acceso a 

Internet a alta velocidad (> 1 Mbps) a todos aquellos usuarios que se encuentran dispersos en 

amplias zonas de cobertura (celdas) de cada estación base. Por lo tanto en un escenario así se 

podría optar por el protocolo SNMP para llevar a cabo la gestión de toda la red (estaciones 

base y equipos de abonado) de una manera fácil y fiable, siempre y cuando exista 

conectividad entre todos los equipos que se quieren administrar y el equipo que administra. 

El equipo que administra podría hacerlo mediante BreezeLITE de manera que podría llevar 

un control y una gestión de cada estación base identificada por un identificador único que 

consta de tres partes:  

- Operador: Identificador del operador y consta de tres grupos de números como 

por ejemplo 186.190.0 

- Celda: Identifica la celda en concreto y está formado por dos grupos de números. 

Ejemplo: 0.250 

- Sector: Identifica el sector en el que se está dando servicio dentro de la misma 

celda. Ejemplo: 206 

Además del identificador propio de la estación base esta se puede identificar en la red 

por su dirección IP única en su interfaz de gestión o de datos. Mediante las direcciones IP de 

cada estación base se puede interactuar con todas ellas gracias al soporte del protocolo 

SNMP de BreezeLITE. La estación base que se esta analizando dispone de un agente 

(módulo software) SNMP versión 1. 

Las funciones principales de BreezeLITE son: 

- Administrar localmente la estación base. En esto influye la recopilación de 

información como por ejemplo número de paquetes 

enviados/recibidos/eliminados a cada una de las interfaces: data, management y 

wireless. La gestión influye básicamente: 

o Parámetros de la interfaz radio: ATPC (Automatic Power Control), Multirate 

support (modulación adaptativa), ARQ híbrido, nivel de potencia de 

recepción óptima (Optimal RSSI), ancho de banda, potencia de emisión y 

frecuencia de operación en los canales de uplink y de downlink. 

o Parámetros de las interfaces de red (data y mgmt): dirección IP, máscara de 

red, puerta de enlace predeterminada, velocidad y duplexado (en el caso 

que esté desactivada la opción de auto negociación) y para el caso del 

puerto Data, la VLAN ID. 
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- Administrar remotamente los SU. Con BreezeLITE es posible añadir más 

unidades suscriptoras a la red a través de su dirección de enlace MAC. Aquí la 

gestión de los SUs se divide en dos partes:  

o Cuando se añade un nuevo SU: Se puede configurar al inicio si el CPE 

utilizará ATPC, Multirate suport (igual que en la estación base), identificación 

de la BS a la que se asociará, ancho de banda y frecuencia de uplink. A parte de 

los parámetros de nivel físico también se puede configurar el número máximo 

de usuarios que va a permitir el CPE. 

o Cuando se administra un SU activo previamente configurado: En este caso se 

puede recopilar información a nivel físico así como si el ATPC está activo o 

no, última modulación que se usa, ancho de banda, frecuencia de uplink, 

uplink SNR/RSSI, downlink SNR/RSSI, el total de bursts con sus BER (Burst 

Error Rate) transmitidos/recibidos en todas las constelaciones y la cantidad de 

bytes de datos enviados/recibidos y descartados en Tx y en Rx tanto en las 

interfaces Ethernet como en  las interfaces wireless. 

- Monitorización. La monitorización con BreezeLITE permite analizar el 

rendimiento de la red mostrando información referente al estado y a los parámetros 

físicos de cada SU y de la BS (SNR de uplink y downlink, potencia de transmisión 

(variable con ATPC), niveles de potencia recibidos en ambas partes, etc). 

- Servicios Quality of Service. BreezeLITE permite asignar perfiles QoS en cada uno  

de los canales de subida y de bajada para cada SU. Estos perfiles incluyen: RT-VBR 

(Real Time-Variable Bit Rate), NRT-VBR (Non Real Time-VBR), BE (Best Effort) y CG 

(Committed Garantee). La finalidad de los perfiles de QoS es poder proveer distintos 

tipos de tráfico (sensibles o no al retardo) a una velocidad adaptable a la necesidad de 

cada aplicación de usuario (ejemplo: voz como videollamadas equivale a un RT-VBR 

y navegación por Internet a un Best Effort o a un NRT-VBR) de manera que aquellos 

más sensibles se les dará mayor calidad de servicio frente a los menos sensibles al 

retardo. 

 

- Filtrado de tramas. Mediante la opción de filtrado que BreezeLITE lleva 

incorporada se puede admitir/denegar el acceso a la red wireless/cableada de la 

operadora a aquellos dispositivos (de usuario y CPEs) que sus direcciones MAC/IP 

se hayan configurado previamente en la estación base. 
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La figura 3.11 muestra una de las opciones de gestión radio de BreezeLITE. 

 

Figura 3.11  Gestión de la air interface con BreezeLITE 

 
 

3.3.1 Protocolo SNMP (Simple Network Management Protocol) 
 

El protocolo SNMP es un protocolo de aplicación que facilita el intercambio de 

información de administración entre dispositivos de red. SNMP forma parte de la familia de 

protocolos de Internet y utiliza un servicio no orientado a conexión (SNMP permite a los 

administradores supervisar el desarrollo de la red, buscar y solucionar los problemas así 

como plantear su crecimiento). 

Existen tres versiones del protocolo: SNMPv1, SNMPv2 i SNMPv3. Las dos primeras 

versiones tienen muchas características en común, pero no obstante SNMPv2 ofrece mejoras. 

En cambio, SNMPv3 posee cambios significativos en relación con sus predecesores, 

sobretodo en aspectos de seguridad.  
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3.3.1.1 Componentes básicos de SNMP 
 

Una red administrada a través de SNMP consta de tres componentes principales:   

 

- Dispositivo administrado: Es un nodo que reside en una red administrada y que 

contiene un agente SNMP. Estos dispositivos se encargan de recoger y almacenar 

información de administración que puede ser puesta a disposición de los sistemas de gestión 

de red o NMS’s (Network Managements) a través de mensajes SNMP. En el caso del proyecto 

los dispositivos a administrar son los equipos de abonado (Si-CPE y PRO-CPE). En un caso 

real los dispositivos a administrar podrían ser otras estaciones base y los equipos suscritores 

de abonado. Además, también se podría ver una estación base como una red de dispositivos 

o elementos administrados (unidades radio interfaces de red, etc) que son gestionados por 

una entidad SNMP superior o NMS: BreezeLite.  

- Agente: El agente se trata de un módulo de administración de red que reside sobre un 

dispositivo administrado y que posee un conocimiento local de la información de 

administración (ej: nombre de bursts enviados/recibidos, potencia de transmisión, potencia 

recibida, etc.). La información de administración se traduce en formato SNMP y se encuentra 

organizada en jerarquías.   

- NMS (Networking Management System): Es un sistema de gestión que ejecuta 

aplicaciones que supervisan y controlan los dispositivos administrados. Los NMS’s 

proporcionan el volumen de recursos de procesado y memoria requeridos para la 

administración de la red. Uno o más NMS’s deben existir en cualquier red administrada. La 

estación base del proyecto es un ejemplo de un sistema de gestión de red.  

3.3.1.2 Comandas básicas de SNMP 
 

Las comandas básicas de SNMP que se pueden realizar para supervisar y controlar un 

dispositivo administrado son:  

- Lectura: comanda utilizada por un NMS para supervisar los elementos de la red. El 

NMS examina diferentes variables que son mantenidas por los dispositivos administrados.  

- Escritura: comanda utilizada por un NMS para modificar los valores de las variables 

almacenadas en los dispositivos administrados.  

- Notificación: comanda usada por los dispositivos administrados con el objetivo de 

notificar al NMS cuando surge un evento.  
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- Operaciones transversales: comanda que el NMS utiliza para determinar que variables 

soporta un dispositivo administrado y para recoger secuencialmente información en tablas 

de variables.  

3.4 Configuración básica de la estación base WiMAX 
 

En esta sección se describe los pasos necesarios para realizar una configuración básica 

de la micro estación base WiMAX de Alvarion mediante el programa de gestión BreezeLITE. 

Con la configuración básica se tendrá una red WiMAX funcionando cumpliendo los 

requisitos de nivel físico. Para empezar la figura 3.12 muestra la pestaña General de la 

estación base. En ella se puede añadir unos identificadores formados por un nombre, una 

localización y un contacto. El resto es solo información referente al equipo (versión del 

firmware, temperatura, tiempo de funcionamiento, etc) y parámetros de configuración 

irrelevantes para la puesta en funcionamiento de la red. 

Posteriormente en la pestaña Air Interface que se muestra en la figura 3.13 se debe 

configurar: 

 

- Identificación de la BS: La identificación de la estación base consta de 6 grupos de tres 

dígitos cada uno. Los primeros 3 grupos definen el ID del operador de red, los 

siguientes dos grupos definen la identificación de la celda en concreto y el último 

grupo define la identificación del sector. 

- ARQ Status: El parámetro ARQ habilitado/deshabilitado controla si se usa un 

algoritmo ARQ para detectar errores y solicitar retransmisiones de mensajes unicast 

(aplicable solo para servicios Best Effort y Non Real Time). 

- Max. Cell Radius: Este parámetro es usado para adaptar varios parámetros de timing 

de nivel MAC en el momento en que se recibe un mensaje para alcanzar su 

destinación. El retardo temporal es dependiente sobre la distancia entre transmisor-

receptor. Los parámetros de timing deberían ser adaptados al retardo más grande 

esperado, es decir, la distancia más grande entre la estación base y el terminal SU 

servido por ésta. Un SU que se encuentre localizado  a una distancia mayor que el 

configurado en este parámetro, será rechazado durante el proceso de acceso a la red. 

Este parámetro debe de ser de 10 Km o equivalentemente el tiempo de símbolo que es 

de 68μs.   
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- Multi Rate Support: Aquí se configuran las constelaciones básicas que se usarán en los 

enlaces de uplink/downlink y además se debe tener activado el algoritmo de 

modulación y codificación adaptativa. 

- Bandwith: Ancho de banda del sistema, 3.5 MHz, en el caso de WiMAX  802.16-2004.  

- ATPC Parameters: Se especifica el nivel óptimo de potencia en recepción en la estación 

base en el que todas las transmisiones deberían ser recibidas por las unidades AU-

ODU para asegurar un rendimiento óptimo. El rango es de [-103:-60] dBm. Por otro 

lugar el algoritmo de control automático de potencia debe estar habilitado. 

 

 

Figura 3.12 Pestaña General de la estación base  

BreezeLITE) 

 

 
 Figura 3.13  Parámetros configurados de la Air 

Interface de la estación base. 

 

Para especificar la potencia de transmisión (sin considerar la antena) se utiliza la 

pestaña de ODU que se muestra en la figura 3.14. La banda de frecuencia configurada es la 
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3.5b equivalente a uplink: 3450-3500 MHz y downlink: 3550-3600 MHz. La frecuencia de 

transmisión de downlink se configura en la pestaña channels como se indica en la figura 3.15.  

  

  
Figura 3.14 Potencia de transmisión 

configurada (el máximo es de 28 dBm). 

Figura 3.15 Configuración de la frecuencia de 

transmisión en el canal de bajada. 

 

Con el proceso realizado hasta este punto ya se tendría una red WiMAX en 

funcionamiento. Para que los usuarios puedan acceder a Internet se debe conectar la estación 

base a un dispositivo de nivel 3, a un router por ejemplo y configurar las direcciones de sus 

interfaces de red y de gestión. La figura 3.16 muestra la configuración que se tiene en la 

estación base WiMAX.  

 

 
Figura 3.16 Configuración de red de la estación base 
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4 CAMPAÑA DE MEDIDAS 
 
 
 
 

 En este capítulo se obtienen una serie de medidas de cobertura  WiMAX en distintos 

tipos de escenarios: en interiores o indoor y en exteriores u outdoor. El escenario indoor es el 

peor de los escenarios para una red WiMAX debido a la gran cantidad de obstáculos (ej: 

paredes, entresuelos, u otros) que provocan atenuación y por lo tanto dificultan la 

propagación de la señal. Para la predicción de la potencia recibida estos obstáculos se deben 

tener en cuenta.   

Concretamente las medidas que se presentan en este capítulo tanto en escenarios indoor 

como outdoor se basan en obtener unos modelos de Path loss a partir de los resultados de las 

potencias recibidas por el terminal de usuario en distintas posiciones, siendo la mayoría de 

ellas canales de tipo NLOS61. Para saber como es la calidad de un radioenlace es importante 

conocer la SNR, la modulación (por lo tanto el throughput bruto) y el nivel de potencia 

recibida en el terminal de usuario y también en la BS. Así pues se tendrá la SNR 

uplink/downlink, la RSSI62 uplink/downlink y la modulación/tasa de codificación 

uplink/downlink.  

Antes de empezar a describir los escenarios empleados, en la  sección 4.1 se describe 

un estado de arte sobre el path loss de la tecnología WiMAX en outdoor que se emplea en este 

proyecto a 3.5GHz y además algún par de artículos sobre análisis empíricos en indoor 

empleando otras tecnologías.   

                                                 
61 Non Line-Of-Sight 
62 Received Signal Strength Indicator 



Despliegue y análisis de la cobertura de una red WiMAX basada en IEEE 802.16-2004 
 
52 

4.1 Estado de Arte  
 

 El desarrollo de este capítulo basado en la obtención de modelos de path loss de 

WiMAX en entornos indoor y outdoor sigue procedimientos similares a otros trabajos 

existentes en la literatura. Estos artículos se muestran en la sección de referencias de la 

memoria del proyecto y se resumen en esta sección.  

Empezando por un artículo teórico publicado por [Afr07] describe la metodología para 

la obtención de un modelo de path loss a partir de los resultados medidos.  

Otro artículo también teórico de [Vak06] describe la metodología usada para estimar 

empíricamente la cobertura WiMAX a 3.5GHz. La metodología que emplea utiliza el 

exponente de path loss definido por IEEE (el exponente de path loss, γ, es un parámetro que 

caracteriza el tipo de escenario donde se obtienen las medidas en función de su valor).  

El artículo de [Imp07]  describe las medidas de path loss obtenidas a 3.5 GHz de un trial 

test de WiMAX en ambientes rurales. Sus resultados obtienen γ variables entre 2.13-3 en 

función de diversos factores, tales como: la altura de la antena receptora y la variación de la 

estación del año a 3.7GHz asociada al follaje de los árboles a una distancia hasta 6 Km de la 

estación base. Además realiza una comparativa entre sus resultados obtenidos por regresión 

de mínimos cuadráticos, Least Squares y los obtenidos por otros modelos empíricos 

disponibles (SUI de IEEE y COST231-Hata) demostrando que dichos modelos existentes 

pueden ser inadecuados en escenarios rurales debido a que producen una sobre estimación 

de las pérdidas de propagación.  

El artículo de [Gro07] se trata de un estudio sobre el rendimiento del nivel físico y del 

path loss en el desarrollo de la variante de WiMAX de acceso fijo a 3.5GHz a partir de  las 

medidas de la RSSI y la SNR. Se han empleado 10 BS63 transmitiendo a un máximo de 28 

dBm y  usando antenas sectoriales de 14 dBi de ganancia. Todas las BSs se encuentran 

esparcidas en zonas urbanas, semi-urbanas y rurales, cerca de la ciudad de Gjovik, Noruega. 

De la misma manera que el artículo de [Imp07], en el trabajo de [Gro07] se comparan sus 

resultados con los de otros modelos bien conocidos (como por ejemplo el modelo de espacio 

libre).  En  su campaña de medidas han empleado 10 estaciones base WiMAX. El total de 

unidades suscritoras (SUs) es de 850 siendo localizadas la mayoría de ellas en condiciones 

LOS y el resto en condiciones NLOS. 

                                                 
63 Base Station 
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[Erc99] presenta en su artículo publicado en una revista de IEEE en julio del 1999 y 

titulado “An empirically based path loss model for wireless channels in suburbans environments” un 

modelo de path loss estadístico derivado a partir de datos experimentales a 1.9 GHz 

coleccionados a lo largo de Estados Unidos en 95 macroceldas existentes. El modelo obtenido 

es válido para áreas suburbanas y se distingue entre diferentes categorías de terreno. 

Además, su modelo aplica a distancias (0.1Km-8Km) y alturas de la antena base (10m-80m) 

no cubiertas por los modelos existentes. La caracterización utilizada es una recta lineal que 

produce las pérdidas en dB versus distancia y con una variación gaussiana alrededor de la 

recta debida al fading. La pendiente de la recta (correspondiente a γ)  es una variable aleatoria 

de una celda a otra con una desviación estándar σ  debida también al fading. Estos dos 

parámetros, son modelados estadísticamente  con las dependencias de la altura de la antena 

base (entre 10m-80m) y la categoría del terreno.  

La publicación de [Luc07] describe modelos de path loss para IEEE 802.16 en escenarios 

suburbanos y tipo campus. En dicho artículo se presentan los resultados principales de una 

campaña de medidas sobre la propagación a 3.5GHz conducidos por el grupo British Telecom 

de Italia y la compañía Ericsson con la Universidad de Roma “Tor Vergata”. El modelo de 

path loss resultante a partir de datos experimentales presentado muestra una γ del orden de 

3.03 para el escenario suburbano (conducido por BT) y de 3.53 para el escenario tipo campus 

(conducido por Ericsson). El modelo obtenido en ambos casos es fruto de la colección de 

hasta 200 medidas a lo largo de una ruta en coche definida (la mayoría en condiciones 

NLOS)  sobre la potencia recibida pero solo unas 170/180 medidas han sido utilizadas para 

evaluar los parámetros de los modelos de path loss. Finalmente presentan una comparativa 

entre el modelo OS (One Slope) también conocido como modelo SUI (el de Erceg) y el modelo 

de espacio libre así como un análisis de cobertura. Se observa que según el modelo la 

cobertura en un escenario tipo campus es del orden de 1570m y en un escenario suburbano 

de 996m. 

El artículo sobre “Empirical propagation model for WiMAX at 3.5 GHz in an urban 

environment” publicado por [Val08], presenta un modelo de propagación empírico obtenido 

de un proyecto piloto llevado a cabo en Saarbruecken, Alemania. Los resultados de la 

campaña de medidas amplia del testeo de WiMAX en un escenario urbano operando a la 

frecuencia de 3.5GHz son presentados y comparados con sus propias predicciones del nivel 

de campo. El procedimiento que ha llevado a cabo es parecido al de [Erc99], [Imp07], 

[Luc07], con un vehiculo ha seguido una ruta coherente para obtener suficientes medidas 

sobre el nivel de potencia recibida para luego poder obtener un modelo. Los resultados 
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finales muestran una γ = 3.91, coherente para un escenario urbano. También concluyen que 

el 99% de todos los puntos de recepción medidos con antenas a 2m de altura, tienen lugar  

dentro de un radio de 1500m. Esto necesariamente no tiene que ser el caso de otros lugares o 

sistemas y que este rango de cobertura puede ser mayor si se utilizan antenas a alturas 

superiores. 

El último artículo de pruebas en outdoor es el publicado por [Kon07]. Este artículo 

presenta los resultados obtenidos por COSMOTE en los meses Febrero-Abril del 2006 sobre 

el comportamiento de la tecnología WiMAX fijo (IEEE 802.16-2004) en un el centro de un 

entorno urbano (la ciudad de Atenas) a lo largo de una calle y escenario NLOS. Se ha 

utilizado un ordenador portátil y un terminal portable WiMAX CPE. Se demuestra que la 

característica principal en este escenario son las variaciones rápidas impredecibles debido a 

la existencia de vehículos y personas en movimiento conocido como efecto shadow fading o 

shadowing. Estas medidas simulan el rendimiento del sistema que un usuario final percibe en 

una cierta localización fija como en una cafetería, en un restaurante, etc. La movilidad de los 

obstáculos (vehículos, personas) hace que el throughput percibido por el usuario final sea 

aleatorio. Esta variabilidad del throughput puede afectar severamente a la calidad de 

aplicaciones de tiempo real tales como videoconferencia o aplicaciones VoIP sensibles al 

retardo. 

 El artículo de [Xu07] obtiene modelos empíricos de Path loss de una y de doble 

pendiente a 5.25 GHz con 100 MHz de ancho de banda en un escenario de oficinas indoor a 

partir de un conjunto extensivo de datos experimentales coleccionados en un edificio de 

oficinas en la localidad de Beijing, China. Los análisis llevados a cabo son: visión directa en la 

misma oficina de la BS, oficina-pasillo sin visión directa y oficina-oficina. Las medidas de 

canal radio han sido obtenidas utilizando PropSound (TM), una sonda de canal radio 

multidimensional del grupo “Elektrobit”. Como antena transmisora en la BS se ha utilizado 

un array cilíndrico omnidireccional formado por 25 antenas parche de doble polarización.  

Como antena receptora se ha empleado un array de 8 monopolos circular y  con polarización 

vertical. La potencia transmitida para las medidas es de 26 dBm. Los resultados sobre el 

exponente de path loss en ambos artículos demuestran que en indoor se pueden obtener γ  < 2, 

debido al efecto de guía de onda causada por las paredes, el suelo y lo que rodea la 

habitación/pasillo. En condiciones LOS, se obtiene a 5.25 GHz un valor de γ  = 1.48 dentro 

de una habitación y además un modelo de doble pendiente  con γ  = 2.58 y γ  = 2.91 a lo 

largo de un pasillo.  
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El artículo de [Kiv01] explica el procedimiento seguido para obtener un modelo 

empírico de path loss a 5.3 GHz basado también a partir de una serie de campaña de medidas 

extensa en cuatro escenarios indoor: tres oficinas y una gran sala de espera de un aeropuerto  

En el transmisor se emplea una sonda que genera una secuencia pseudoruidosa a partir de 

511 chips con una frecuencia de señal chirp de 53.75 MHz para modular la señal portadora.  

La potencia de transmisión es de 30 dBm y el receptor tiene una figura de ruido de 3 dB. Las 

distintas antenas utilizadas en transmisión y en recepción en los diferentes escenarios son: 

una antena discono de 1 dBi de ganancia, omnidireccional, polarización vertical y 

3 108o
dBθ−Δ = ; una antena piramidal de 13 dBi de ganancia y con anchos de haz en plano E y 

H de 3 337 , 31o o
dB dBθ φ− −Δ = Δ = y por último una antena parche de 6.7 dBi de ganancia y  

3 370 , 80o o
dB dBθ φ− −Δ = Δ = . Los resultados son valores de γ  entre 1.3-1.5 en LOS. El artículo 

demuestra que en condiciones NLOS se obtienen valores del exponente de path loss mayores  

(γ  = 2.9-4.8) para los diferentes escenarios de oficina. Una razón es debido a los diferentes 

mecanismos de propagación dominantes debido a las estructuras diferentes de paredes del 

edificio: propagación a través de las paredes, guías de onda combinadas con difracción, y 

scattering difuso de estructuras no homogéneas. 

 Como ya se ha comentado al inicio de este apartado, se sigue el procedimiento de la 

literatura en el que a partir de las potencias recibidas empíricas se obtienen, por el método de 

aproximación por mínimos cuadrados, los coeficientes de un modelo empírico genérico.  

- En indoor se utiliza el terminal Self-Install de 6 antenas de 9 dBi de ganancia y 

3 60o
dBφ−Δ =  y se realizan medidas en diferentes escenarios en el interior de un 

edificio: en LOS a lo largo de un pasillo, en NLOS entre oficinas y en NLOS entre 

oficina-pasillo. Además se comparan dos modelos: uno que cuantifica los obstáculos 

y tiene en cuenta la atenuación y el otro que busca una γ  que se corresponda con 

todas las medidas. La diferencia con los dos artículos mencionados es que en el 

proyecto no se colecciona un extenso conjunto de medidas para obtener los modelos 

empíricos. La potencia transmitida por la BS es de 13 dBm y utiliza una antena 

sectorial de 14.5 dBi de ganancia. 

- En outdoor directamente se han comparado dos modelos a partir de los datos 

empíricos recogidos en un máximo de 12 posiciones equiespaciadas a distancias de 

mínimo 100m: el modelo Erceg que se describe en 4.3.1 y otro modelo que se basa en 

obtener los coeficientes de una recta de la forma L = A+B·log(d). Se demuestra que el 
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modelo más aproximado  a los datos empíricos es el último. La potencia que se 

transmite es de 38 dBm y se emplea una antena omnidireccional de 10 dBi de 

ganancia. Las medidas han sido recogidas empleando un terminal con dos antenas 

externas: una antena directiva de 17 dBi de ganancia y 3 320 , 20o o
dB dBθ φ− −Δ = Δ =  y 

una antena omniazimutal de 2 dBi. 

4.2 Descripción de los escenarios 
 

4.2.1 Escenario indoor 
 

Las medidas que se obtienen en este escenario han sido realizadas en el edificio Q6 de 

la escuela ETSE de la Universidad Autónoma de Barcelona. Este edificio consta de tres 

plantas y tiene unas dimensiones de 48.51m x 11.935m x 34.75 m. (la altura del edificio se ha 

medido desde la posición más baja hasta la posición más alta del mismo). 

Las figuras 4.1-4.3 muestran el edificio con diferentes vistas. Se puede observar que 

entre la planta 0 y la planta 1 (planta central) existe una pequeña elevación del terreno de 

aproximadamente 3.84 m. La altura respecto del mar para la zona más baja del terreno es de 

aproximadamente 130 m64.  

 

 
 

Figura 4.1 Vista frontal del edificio Q6 

                                                 
64 La altura respecto el mar se obtiene con los mapas que ofrece el software GoogleEarth 



Capítulo 4. Campaña de Medidas 
 

57

 
Figura 4.2 Vista lateral (1) del edificio Q6 

 
Figura 4.3 Vista lateral (2) del edificio Q6 

 
Respecto a la arquitectura de cada una de las plantas, las figuras 4.4, 4.5 y 4.6 muestran 

de manera aproximada el diseño o esquema interior. El tipo de material de las paredes es de 

doble aplacado de cartón yeso y su grosor es de 30 cm. La figura 4.7 incorpora las medidas 

de altura entre plantas y del mismo edificio así como la localización de la antena 

omnidireccional de WiMAX. Las medidas obtenidas no son exactas al 100% pudiendo haber 

errores de cm, no obstante estos errores no afectarán en gran medida a los resultados que se 

obtengan en los siguientes apartados.  

 

 
 

 
Figura 4.4 Arquitectura de la planta 2 
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Figura 4.5 Arquitectura de la planta 1 
 

 
 

Figura 4.6 Arquitectura de la planta 0 

 
 

Figura 4.7 Estructura 3D del edificio y sus medidas correspondientes 
 

4.2.2 Escenario semi-rural (outdoor)  
 

Se entiende como escenario semi-rural aquel tipo de escenario caracterizado por una 

baja densidad de edificios entre BS y FS65. Dentro del campus se han escogido posiciones 

equiespaciadas una distancia de 100 m sobre una carretera paralela al edificio donde se 

encuentra la estación base WiMAX tal y como se muestra en el mapa de las figura 4.8 y 4.9. 

La carretera donde se encuentran las posiciones de medida en el primer caso presenta 

elevaciones del terreno en ciertos tramos mientras que para el segundo caso ocurre lo 

contrario, la altura del terreno respecto el mar se mantiene más o menos constante durante 

                                                 
65 Fixed Station 
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un cierto tramo y luego reduce progresivamente. El escenario de la figura 4.9 es más suave 

que el primero y por esta razón también se obtienen medidas para la obtención de un 

modelo empírico de path loss. El gráfico de la figura 4.10 muestra aproximadamente el perfil 

del terreno para los dos escenarios. En el centro se encuentra la estación base WiMAX más o 

menos a una altura de 13.5 m sobre el terreno. Se observa como para el escenario semi-rural 

abrupto el terreno mejora  a partir de la posición 3 mientras que para el otro escenario sucede 

más o menos lo contrario a partir de la posición 6. Además también se muestran los primeros 

obstáculos que influyen en la potencia recibida en la primera posición para el caso del 

escenario semi-rural abrupto y entre las posiciones 1-6 para el escenario semi-rural suave. 

Esta repercusión se demostrará que influye en la obtención de un modelo de path loss 

coherente para el tipo de tipo de escenario. 

 

Figura 4.8 Indicación de los puntos de medida en escenario semi-rural abrupto 
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Posiciones 
de medida 

Tipo 
Escenario Latitud Longitud Distancia a la 

BS 

Altura 
respecto 
nivel del 

mar  
p1 NLOS 41°30'3.54"N   2° 6'44.91"E 100 m 135 m 
P2 NLOS 41°30'5.96"N   2° 6'41.57"E 200 m 135 m 
p3 NLOS 41°30'7.86"N   2° 6'37.84"E 300 m 135 m 
p4 NLOS 41°30'10.18"N   2° 6'34.78"E 400 m 137 m 
p5 NLOS 41°30'12.25"N   2° 6'31.42"E 500 m 142 m 
p6 LOS 41°30'14.87"N   2° 6'29.08"E 600 m 147 m 
p7 NLOS 41°30'17.15"N   2° 6'26.00"E 700 m 149 m 
p8 NLOS 41°30'19.08"N   2° 6'22.44"E 800 m 149 m 
p9 NLOS 41°30'21.86"N   2° 6'20.06"E 900 m 150 m 

p10 NLOS 41°30'24.04"N   2° 6'16.83"E 1000 m 153 m 
p11 NLOS 41°30'25.83"N   2° 6'13.11"E 1100 m 158 m 
P12 NLOS 41°30'27.80"N   2° 6'9.58"E 1200 m 161 m 

Tabla 4.1 Datos de las posiciones de medida en el escenario de la figura 4.8 

 

Figura 4.9 Indicación de los puntos de medida en escenario semi-rural suave 
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Posiciones 
de medida 

Tipo 
Escenario Latitud Longitud Distancia a la 

BS 

Altura 
respecto 

nivel del mar 
p1’ NLOS 41°30'0.14"N 2° 6'50.78"E 100 m 135m 
p2’ NLOS 41°29'57.75"N 2° 6'54.23"E 200 m 135m 
p3’ NLOS 41°29'55.80"N 2° 6'57.86"E 300 m 135m 
p4’ NLOS 41°29'53.26"N 2° 7'0.69"E 400 m 135m 
p5’ NLOS 41°29'51.84"N 2° 7'4.66"E 500 m 136m 
p6’ NLOS 41°29'50.33"N 2° 7'8.47"E 600 m 133m 
p7’ NLOS 41°29'49.06"N 2° 7'12.40"E 700 m 126m 
p8’ NLOS 41°29'48.01"N 2° 7'16.74"E 800 m 120 m 
P9’ NLOS 41°29'46.70"N 2° 7'20.60"E 900 m 116 m 
p10’ NLOS 41°29'45.02"N 2° 7'24.36"E 1000 m 100 m 

Tabla 4.2 Datos de las posiciones de medida en el escenario de la figura 4.9 

 

 Figura 4.10 Perfil del terreno para los dos escenarios que se analizan en la sección 4.3.3 
 
4.2.3 Escenario semi-urbano (outdoor)  

 
 Como escenario semi-urbano se ha pensado como el de la figura 4.11, cuya 

distribución de edificios más o menos es uniforme. En este escenario se tiene una gran 

densidad de edificios alrededor por lo que se espera que las pérdidas que se obtengan sean 

más elevadas que en los escenarios semi-rural presentados en el apartado anterior. Las 10 

posiciones de medida no se encuentran equiespaciadas como es de suponer, en un entorno 

con muchos obstáculos no se pueden definir distancias equiespaciadas como se realiza en el 

escenario semi-rural.  

La primera posición a 100 m se encuentra frente a un edificio que impide la visibilidad 

con la BS WiMAX hecho que causará una potencia recibida mucho menor que la que se 

obtiene en condiciones LOS (-36 dBm). De la misma manera ocurre para el resto de las 

posiciones que se encuentran con más obstáculos hacia la estación base (la mayoría edificios). 

 En cuanto a la tabla 4.3, se muestra las coordenadas de los puntos de medida así 

como la elevación respecto el nivel del mar, la distancia a la BS y el tipo de escenario. Se 
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observa que todas las posiciones son NLOS. Además entre las posiciones 5 y 9 existe una 

pendiente positiva del terreno, poco pronunciada. La zona de alrededor de la posición 9 se 

encuentra más o menos por encima de los edificios que existen entre la posición 5 y la 

posición donde se encuentra la BS WiMAX. 

 

Figura 4.11 Indicación de los puntos de medida en escenario semi-urbano 
 

Posiciones 
de medida 

Tipo 
Escenario Latitud Longitud Distancia a la 

BS 

Altura 
respecto 
nivel del 

mar  
p1 NLOS 41°30'1.54"N   2° 6'42.52"E 100 m 131 m 
p2 NLOS 41°30'2.76"N   2° 6'36.72"E 234.37 m 125 m 
p3 NLOS 41°30'6.49"N   2° 6'30.11"E 421.94 m 133 m 
p4 NLOS 41°30'6.67"N   2° 6'19.38"E 657.90 m 131 m 
p5 NLOS 41°30'8.00"N   2° 6'13.72"E 795.56 m 138 m 
p6 NLOS 41°30'9.20"N   2° 6'6.65"E 963.37 m 139 m 
p7 NLOS 41°30'10.38"N   2° 6'3.20"E 1046.08 m 141 m 
p8 NLOS 41°30'11.66"N   2° 5'57.55"E 1188.05 m 146 m 
p9 NLOS 41°30'12.76"N   2° 5'53.92"E 1276.87 m 153 m 

p10 NLOS 41°30'13.83"N   2° 5'47.98"E 1421.26 m 161 m 

Tabla 4.3 Datos de las posiciones de medida en el escenario de la figura 4.11 
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4.3  Resultados de cobertura WiMAX 
 

WiMAX, como tecnología WMAN se ha diseñado con el propósito de ser una de las 

tecnologías de acceso radio de banda ancha en el bucle local de abonado abarcando 

distancias superiores hasta 50 Km en condiciones LOS y entre 3-7 Km en condiciones NLOS. 

Es por esta razón por la que WiMAX ha sido estudiada y analizada por otras entidades, 

como empresas y grupos de investigación en diferentes escenarios outdoor como se ha 

explicado en el estado de arte de la sección 4.1. No obstante, hasta el momento no se han 

encontrado modelos de canal WiMAX a la frecuencia de operación Europea de 3.5 GHz en 

escenarios indoor y es por este motivo que este proyecto analiza los resultados de cobertura 

WiMAX en este caso especial de escenario, poniendo a prueba la tecnología en un entorno  

con una elevada atenuación causada por las particiones entre plantas (ej: entresuelo)  y las 

particiones de la misma planta (ej: paredes) . 

Para ambos escenarios indoor y outdoor, se estima un modelo empírico simplificado de 

predicción de pérdidas de propagación para estimar la potencia recibida en base a una serie 

de medidas empíricas obtenidas. Para el caso indoor se comparan dos modelos diferentes: un 

modelo que tiene en cuenta la atenuación debida a los obstáculos que interfieren la visión 

entre las antenas respectivas que forman el radioenlace y otro modelo que es una 

aproximación válida cuando es difícil  o inviable obtener la atenuación de los obstáculos, por 

ejemplo en un caso outdoor. Este último modelo empleado en ambos escenarios se describe en 

la sección 4.3.1.  

 

4.3.1 Modelización de la propagación en  indoor y outdoor 
 

Los modelos de propagación teóricos son útiles para evaluar las pérdidas de 

propagación asociadas a distintos efectos como pueden ser reflexión en tierra plana, 

difracción por obstáculos, etc.  En entornos de propagación complejos como es el caso de 

outdoor en el que se superponen varios efectos, el cálculo de las pérdidas se debe abordar a 

partir de modelos empíricos.  Por ejemplo la figura 4.12 representa un escenario habitual en 

los servicios de comunicaciones móviles en zonas urbanas. En la mayoría de las ocasiones no 

existe visibilidad directa entre los dos extremos del enlace: la estación base y el terminal 

móvil. La potencia que recibe el terminal móvil es el resultado de la contribución de ondas 

reflejadas y difractadas en los edificios y obstáculos del entorno. En función de la fase de 

cada una de las contribuciones la suma de todas ellas puede ser constructiva o destructiva 

como se verá más adelante cuando se describa el modelo. En el caso de ser destructiva se 
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producirá un fuerte desvanecimiento de la señal recibida. Sin embargo, con sólo desplazar el 

móvil una distancia del orden de λ/2 [Car02]( 85.7 cm a 3.5 GHz) la contribución puede ser 

constructiva, y por lo tanto se pueden observar fuertes variaciones en la potencia de la señal 

recibida. Estas variaciones pueden llegar a ser del orden de 10 dB-20 dB con pequeños 

desplazamientos.  

El objetivo en un entorno complejo, ya sea en indoor o en outdoor no es predecir 

exactamente la potencia recibida sino determinar el valor medio o esperado de las pérdidas 

de propagación. Sobre ese valor medio se superpone una variable aleatoria que modela las 

fluctuaciones del canal. Des del punto de vista de la planificación de servicios, el objetivo es 

garantizar una probabilidad de outage, es decir, garantizar que una cierta potencia recibida 

no disminuya un porcentaje del tiempo en función de la fiabilidad con la que se requiere el 

servicio. 

 

 
Figura 4.12 Las condiciones de propagación en los 

actuales servicios de comunicaciones móviles son el 

resultado de la superposición  de múltiples reflexiones 

y difracciones. 

 
La obtención de un modelo de predicción empírico de pérdidas de propagación es 

fundamental para obtener de forma aproximada la potencia recibida en cualquier distancia 

de la estación base sin la necesidad de hacerlo empíricamente tal en el que es necesario saber 

la potencia recibida en aquella posición además de la cuantificación del número de 

obstáculos y su atenuación, como por ejemplo se realiza en el escenario indoor de la sección 

4.3.3. Por lo tanto es más útil usar un modelo de path loss que permita predecir las pérdidas 

de propagación en cualquier distancia, y en función del tipo de escenario: espacio libre, en 

interiores, en zonas rurales o semi-rurales con baja densidad de edificios y una distribución 

plana de árboles, etc. El modelo simplificado de path loss que se utiliza en el análisis 

indoor/outdoor se conoce como Erceg model [Erc99] o también modelo IEEE 802.16 SUI66. Este 
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modelo está basado a partir de datos experimentales coleccionados a la frecuencia de 1.9 

GHz en un total de 95 macroceldas de Estados Unidos, la mayoría en áreas suburbanas de 

New Jersey, Seattle, Chicago, Atlanta, y Dallas. Este modelo fue adoptado por el grupo IEEE 

802.16 como modelo recomendado para WiMAX 802.16-2004 [And07]. Aunque los inicios del 

modelo fueron en la frecuencia de 1.9 GHz, más tarde se añadieron modificaciones para 

trabajar a frecuencias superiores, entre 2-4 GHz. El modelo resultante para trabajar a la 

frecuencia de 3.5 GHz es el mismo que el original pero con algunas modificaciones. Se escoge 

este modelo porque otros existentes como son el Okumura-Hata o el COST-231 solamente son 

válidos para frecuencias 150 2MHz f GHz≤ ≤ , alturas de la estación base 30 200BSm h m≤ ≤  

y distancias del receptor a la BS de 1 20Km d Km≤ ≤ . A parte de los modelos Okumura-Hata 

y COST-231 también existe un modelo conocido como Walfish-Ikegami que opera en las 

frecuencias 800 2MHz f GHz≤ ≤ , alturas de la BS 4 50BSh m≤ ≤  y distancias a la BS 

0.2 5Km d Km≤ ≤ . El modelo de Walfish-Ikegami tampoco es útil para la banda de 3.5GHz de 

WiMAX [And07]. El modelo para WiMAX o Erceg model se define en (4.1). En la ecuación 4.1 

no se añade la corrección  para la altura de la antena del terminal porque que en las medidas 

realizadas, la antena del terminal de usuario se halla a una altura inferior de 2 m, altura 

nominal mínima definida por el modelo base de Erceg.  

 
0010 ;)/(log10 ddsPddAPL lfd ≥+++= γ   (4.1) 

 
-    A:  Intercept factor. Esta variable es constante y viene dada por la fórmula de path loss en 

espacio libre (fórmula de Friis): 

 

)/4(log20 010 λπdA=   (4.2) 

donde 0d  suele ser  1-10 m para interiores y 10-100 m para exteriores. [Gol05]. La 

distancia nominal es de 0d  = 100 m para exteriores [Erc99][Vak06] [Imp07]. Para el 

análisis en interiores se va a considerar una distancia de 1 m porque se ha seguido el 

ejemplo de la página  42 del libro [Gol05]. 

- γ : El exponente de path loss γ  depende del ambiente de propagación [Afr07][Vak06]. 

Para el caso de espacio libre γ =2; en interiores de edificios γ  > 5; en áreas urbanas 

poco densas con celdas radio 2.7<γ <3.5; en áreas urbanas mayor densas 3<γ <5. El 

cálculo de γ  puede ser obtenido por el método de mínimos cuadrados o Least Squares a 

partir de los resultados empíricos obtenidos en diferentes distancias o directamente se 
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puede utilizar la aproximación de IEEE  que depende de la altura de la estación base y 

del tipo de terreno. No obstante la aproximación de IEEE es válida para exteriores y por 

lo tanto se presenta cuando se analice la cobertura en los escenarios outdoor de las 

secciones 4.3.2 y 4.3.3. 

 

- lfP : Corrección en frecuencia para frecuencias superiores a 2 GHz: 
 

 
( )2/log6 GHzlf fP =   (4.3) 

 
- s: componente shadow fading  varía aleatoriamente de una posición a otra dentro de la 

misma celda. Es una variable aleatoria gaussiana de media nula y puede ser expresada 

como  

s = σy   (4.4) 

siendo ‘y’ otra variable aleatoria gaussiana de media nula y desviación estándar 

unitaria N[0,1], σ  la desviación estándar de s.  La desviación estándar es también una 

variable aleatoria gaussiana con media sμ y desviación estándar sσ tal que σ  

= sμ +z sσ , siendo z una variable aleatoria gaussiana de media nula. Valores típicos de 

la variable aleatoria s pueden comprender entre 8 y 10.6 dB, dependiendo del tipo de 

terreno [Vak06][ [Imp07]. El efecto shadow fading se considera un desvanecimiento de 

grande escala. 

 

 Como se puede observar el modelo SUI tiene en cuenta el path loss promedio más una 

componente aleatoria gaussiana que simula las variaciones sobre la potencia recibida. Estas 

variaciones pueden ser debidas a la obstrucción temporal debida objetos macroscópicos que 

impiden la visibilidad entre el transmisor y el receptor. Este hecho causa una degradación 

temporal en el nivel de potencia de la señal recibida y por otro lado, en una transmisión 

temporal con visión directa podría resultar en un aumento anormal de la potencia de señal 

recibida. La figura 4.13 muestra la causa del efecto shadowing o shadow fading, que suele 

aparecer cuando el terminal se mueve o cuando permaneciendo fijo, pueden aparecer 

temporalmente objetos grandes (ej: un autobús) que impiden la visibilidad. El efecto de 

shadowing también conocido como desvanecimiento a grande escala es poco común cuando 

las antenas están a una altura mayor que los obstáculos [And07].  
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Figura 4.13 El efecto shadowing causa elevadas fluctuaciones sobre el modelo de pathloss 

produciéndose atenuaciones o ganancias en la señal recibida. [And07] 
 

Sin embargo y como se ha dicho anteriormente, la potencia recibida viene 

contaminada por una suma de fadings de pequeña escala y de grande escala.  La figura 4.14 

muestra un ejemplo de dos  señales interferentes a 2.5 GHz que pueden ser constructivas o 

destructivas.  

 

 
 

 
Figura 4.14 Fast fading: la diferencia temporal entre  la interferencia constructiva (a) y la interferencia 

destructiva (b)  a fc=2.5 GHz  es menor que 0.1 nsg (delay spread, retardo multicamino) en fase que 
corresponde unos 3 cm.  [And07] 
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El modelo presentado se utiliza en los escenarios indoor/outdoor con los siguientes 

propósitos: 

 En el escenario outdoor semi-urbano presentado en la siguiente sección, para hacer 

una comparativa con tres modelos obtenidos con procedimientos diferentes.  

 El primero obtiene un valor para el exponente de path loss mediante una 

fórmula de IEEE.  

 El segundo modelo sigue el procedimiento de Least Squares pero fijando 

una distancia nominal d0 = 100m. A partir de aquí se estima el coeficiente 

γ  del modelo descrito en 4.1. 

 El último modelo utiliza un procedimiento más aproximado que es 

encontrar los dos coeficientes A (relacionado con d0) y γ  que minimizan 

el error cuadrático medio con los datos como se muestra más adelante. 

Este modelo resultante tiene la forma (4.5) y como se observa es distinta a 

(4.1). Esto significa que aunque los modelos se parezcan no son realmente 

el mismo por el hecho que el factor d0 no se encuentra dentro de la 

función logarítmica. Por otro lado, estimar los dos coeficientes a partir de 

(4.1) es muy difícil porque siendo d0 desconocido se convierte la 

estimación en un problema no lineal con los parámetros a estimar. Este 

procedimiento es utilizado por [Afr07] y [Gro07]. 

 

10 log( )L A dγ= +   (4.5) 

 

 En el escenario indoor para obtener un modelo de pérdidas de propagación en 

entorno LOS que se emplea en otro modelo exclusivo para entornos de interiores 

para estimar la potencia recibida. Como ya se afirmado, se considera una 

distancia nominal d0 = 1m, página 42 del libro [Gol05]. Suponiendo d0 = 1m de la 

misma manera que se considera en el segundo procedimiento del escenario 

outdoor semi-urbano una d0 = 100m. Esto facilita la estimación con least squares. 

En este escenario no se ha empleado el modelo (4.5) porque con el primero se han 

obtenido valores de γ  coherentes como se demostrará en la sección 4.3.4. 
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4.3.2 En escenario semi-urbano  

 
En este escenario se va a caracterizar el comportamiento de WiMAX en un entorno 

outdoor del campus de la UAB que pueda asemejar-se a una zona semi-urbana. Todos ellos 

han surgido a partir de promediar 30 muestras en dB para cada parámetro para poder 

eliminar la aleatoriedad del canal inalámbrico y además el ruido térmico del mismo receptor 

del terminal WiMAX. El promediado empleado en un principio ha sido en dB o también 

conocido como la media en dB. El promediado en dB de las potencias recibidas se muestra en 

4.6  mientras que el promediado en lineal (la media en lineal) se muestra en 4.7. 

 

 10log(·)
1 2 3

1

1· · ·......· ( )
N

ngeom dBN i
i

a x x x x a x dB
N =

= ⎯⎯⎯→ = ∑   (4.6) 

10log(·)
_

1 1

1 ( ) 10·log( ) 10log( )
N N

lin lin dBi i
i i

a x a dB x N
N = =

= ⎯⎯⎯→ = −∑ ∑   (4.7) 

 

Más adelante se demostrará que realizar la media en logarítmico de un conjunto de N 

datos (por ejemplo 30) correspondientes a la RSSI aleatoria debido a los diversos efectos 

como pueden ser fast fading y shadow fading es lo mismo que usar todas las muestras sin 

aplicar directamente ningún tipo de promediado. La razón se da cuando se analicen los 

resultados.  

 

Inicialmente se muestran en las tablas 4.4 y 4.5 la media en dB con N = 30 de los 

parámetros del radioenlace en cada una de las distintas posiciones de la figura 4.11 para 

ambos terminales empleados. 
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ANTENA DIRECTIVA (terminal AD) 

RSSI  
(dBm) 

SNR 
(dB) 

Modulación Throughput  
Bruto 

(Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
Posición 1: 

100m  -60.27 -72.07 34 29.87 QAM64 
3/4 

QAM64 
3/4 11.25 11.25 38 14.6 

Posición 2: 
200m  -76.13 -84.17 26 18.67 QAM64 

3/4 
QAM16 

3/4 11.25 7.5 38 20 

Posición 3: 
300m  -88.23 -95.57 14.97 7.20 QAM16 

1/2 
QPSK 

1/2 5 2.5 38 20 

Posición 4: 
400m  - - - - - - - - 38 - 

Posición 5: 
500m  -88.77 -97.6 15.07 5.23 QAM16 

1/2 
BPSK 
3/4 5 1.88 38 20 

Posición 6: 
600m  -92.07 -98 5.73 3 QPSK 

3/4 
BPSK 
3/4 3.75 1.88 38 20 

Posición 7: 
700m  -95.47 -98.97 5.10 2.53 QPSK 

1/2 
BPSK 
1/2 2.5 1.25 38 20 

Posición 8: 
800m  -84.60 -95.47 18 5.67 QAM16 

3/4 
QPSK 

1/2 7.5 2.5 38 20 

Posición 9: 
900m -83.50 -95.13 19.87 7.20 QAM16 

3/4 
QPSK 

1/2 7.5 2.5 38 20 

Posición 10: 
1000m  -84 -92.10 17.87 11.60 QAM16 

3/4 
QPSK 

3/4 7.5 3.75 38 20 

Tabla 4.4 Parámetros del radioenlace medidos con la antena directiva. Escenario semi-urbano 

ANTENA OMNIAZIMUTAL (terminal AO) 
 

RSSI (dBm) SNR 
(dB) 

Modulación Throughput  
Bruto 

(Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
Posición 1: 

100m -74.23 -78.93 27.97 23.07 QAM64 
3/4 

QAM64 
3/4 11.25 11.25 38 20 

Posición 2: 
200m -88.53 -92.20 15.13 10.67 QAM16 

1/2 
QPSK 

3/4 5 3.75 38 20 

Posición 3: 
300m -92.60 -96.70 12.30 4.73 QPSK 

3/4 
QPSK 

1/2 3.75 2.5 38 20 

Posición 4: 
400m - - - - - - - - 38 - 

Posición 5: 
500m - - - - - - - - 38 - 

Posición 6: 
600m - - - - - - - - 38 - 

Posición 7: 
700m - - - - - - - - 38 - 

Posición 8: 
800m - - - - - - - - 38 - 

Posición 9: 
900m -93.97 -98.70 9.90 3.93 QPSK 

3/4 
BPSK 
1/2 3.75 1.25 38 20 

Posición 10: 
1000m - - - - - - - - 38 - 

Tabla 4.5 Parámetros del radioenlace medidos con la antena omniazimutal. Escenario semi-urbano 
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Como el objetivo principal es encontrar un modelo de predicción de pérdidas de 

propagación para este tipo de escenario se van a utilizar de los parámetros anteriores 

solamente la potencia recibida o RSSI para cada terminal. La figura 4.15 muestra una gráfica 

de las potencias recibidas en función de la distancia. Se observa que en un comienzo la 

tendencia de la potencia recibida decrece más o menos de manera lineal con la distancia para 

un terminal equipado con dos antenas diferentes: una antena directiva de ganancia 17 dBi y 

una antena omnidireccional de 2 dBi. A partir de la posición 8 el nivel del terreno es más alto 

y esto causa que las potencias recibidas aumenten, es decir, el rendimiento que ofrece el 

canal inalámbrico mejora. En el caso del terminal de antena omniazimutal solo se recibe en la 

posición 9. Por otro lugar en la posición 4 ninguno de los dos terminales recibe señal de la 

estación base debido a un edificio que obstruye la propagación del rayo directo del lóbulo 

principal de la antena transmisora, hecho que ni por difracción en los edificios ni por 

reflexión en los objetos de alrededor se reciben ecos. Como consecuencia no se va a 

considerar esta posición de medida al no haber información sobre parámetros del 

radioenlace. 

Una variación de la tendencia lineal de los datos, como por ejemplo  una mejora del 

canal, puede repercutir en la obtención de un valor erróneo para el  exponente de path loss 

como se demostrará más adelante, si se emplean todas las medidas para obtener un único 

modelo lineal de pendiente γ que caracterice todo el escenario. En un principio se utilizan 

todas las medidas o puntos de la figura 4.15 para encontrar el modelo más exacto posible y 

luego se observará la consecuencia de ello.  
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Figura 4.15 Potencia recibida medida con las dos tipos 

diferentes de antenas del terminal WiMAX en función con la 
distancia a la BS 
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Se recuerda de nuevo que cada escenario outdoor diferente donde se obtienen medidas 

de canal como el que se está analizando se caracteriza por el exponente de path loss γ  y una 

distancia nominal d0 que define las pérdidas de propagación que se obtendrían en el caso en 

el que el terminal se encontrase a una distancia de la estación base en condiciones de espacio 

libre. Para obtener los coeficientes γ  y d0 se puede hacer mediante distintos procedimientos 

que se describen a continuación. De los parámetros del modelo que se obtengan a 

continuación mediante los distintos procedimientos, los que se acerquen más a los resultados 

medidos definirán el modelo de propagación de path loss para este tipo de escenario que se 

está analizando y además definirá el procedimiento definitivo que se empleará en la sección 

4.3.3. 

 

1. obtención deγ a partir del modelo de IEEE [Erc99]:  

)/( bb hcbha +−=γ   (4.8) 

, siendo bh  la altura de la antena de la estación base 10 m≤  bh ≤  80m (13.5m aproximados 

para este proyecto, ver figura 4.7) y los coeficientes a,b,c dependen de la categoría del 

terreno. En cuanto a la distancia d0, el modelo de IEEE define que para escenarios outdoor d0 

=100 m.  La tabla 4.6 recogida del modelo da los valores numéricos para los coeficientes: 

 

 
Tabla 4.6 Valores numéricos de los coeficientes a,b y c del modelo 

 
A modo de investigación se va a obtener el exponente de path loss para los diferentes 

tipos de terrenos; además se desconoce si el terreno donde se han realizado las medidas es 

exactamente uno de los que se especifican en la tabla anterior o ninguno de ellos. La tabla 4.7 

resume los exponentes de path loss para las categorías de terreno A,B y C y para una altura 

aproximada de la estación base respecto del terreno de 13.5 m.  
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 Categoría del 
terreno 

 A B C 
γ  5.43 5.18 5.01 

Tabla 4.7 Valores de γ  para las distintas categorías de terreno 

 
Como se observa los valores que se obtienen de γ  son superiores a 5 en las tres categorías de 

terreno, y esto significa pérdidas muy elevadas. La razón es porque la altura de la estación 

base respecto el terreno es bastante baja. Por ejemplo en el caso de bh = 35m y un terreno tipo 

C, γ = 4.721. Para poder ver como influye bh  con γ  para las diferentes categorías de terreno, 

se muestra en la figura 4.16 el comportamiento de γ  versus bh . Se observa como el terreno 

tipo C es el que tiene menores pérdidas de propagación porque el exponente de path loss es 

menor. Por otro lugar se puede decir que la altura de la estación base influye en las pérdidas 

de propagación, lógicamente porque a menor altura más robusto será el canal inalámbrico. 

Para obtener γ  menores de 4 se necesitaría una bh  > 35 m para el terreno tipo C, bh  > 50m 

para el tipo B y bh  > 90 m para el tipo C. El caso que se aplica al proyecto es una bh  = 13.5 m, 

y como se puede observar para esta altura, las pérdidas de propagación son elevadas: 

 

Figura 4.16  Exponente de path loss en función de la 
altura de la estación base respecto el terreno, para los 

diferentes tipos de terreno. [Afr07] 
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2. Estimación de γ  con least squares, suponiendo una d0 = 100m [Erc99]: El resultado de este 

modelo estima un valor para el exponente a partir de minimizar el error cuadrático medio 

entre las medidas empíricas y las que se obtengan por el modelo de predicción. Por lo tanto 

se van a obtener dos modelos de path loss distintos para los terminales empleados AD y AO 

cuyas funciones de least squares se muestran a continuación juntamente con la estimación de 

los valores de los exponentes de path loss: 
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AO AD AD AD AD
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γγ

γγ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ
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Los nuevos modelos de path loss para ambos terminales se definen a continuación: 

( ; ) 84.78 59·log( )
100

( ; ) 84.78 57.4·log( )
100

AD

AO

dL dB d

dL dB d

= +

= +
 

 

3. Estimación de los parámetros de interés γ  y d0 mediante least squares: Este procedimiento 

sigue el descrito en [Afr07] y ejecutado por [Gro07]. A partir de las pérdidas de propagación 

empíricas y del modelo cuyos parámetros desconocidos son ‘a’ y ‘γ ’ se realiza una 

estimación de least squares para hallar los parámetros de interés óptimos que minimizan el 

error. El procedimiento matemático es el siguiente: 

 

1 1 1 1

2 2 2 2

10 log( ) 1 10·log( )
10 log( ) 1 10·log( ) · ·

.... ...

L a d d
a

L a d L d A b
γ
γ

γ

= + ⎫ ⎡ ⎤
⎡ ⎤⎪ ⎢ ⎥= + − − > = =⎬ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎪ ⎢ ⎥⎭ ⎣ ⎦

  (4.10) 

La solución de least squares  de bAL ·= es ·OPTb A L+= . El vector L son los valores empíricos 

de path loss y el vector OPTb  incluye los coeficientes óptimos ‘a’ y ‘γ ’. Los modelos que se 

obtienen mediante el procedimiento descrito para ambos terminales son: 
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( ; ) 79.64 21.06·log( )
( ; ) 72.20 22.26·log( )

AD

AO

L dB d d
L dB d d

= +
= +

 

 
 

Una vez descritos los distintos modelos para cada tipo de terminal de usuario, se 

grafican todos ellos en las siguientes gráficas que se muestran a continuación para poder 

observar que procedimiento obtiene un modelo más aproximado a los datos. Las figuras 4.17 

y 4.18 muestran una comparativa entre la potencia recibida empírica para ambos terminales 

empleados y los distintos modelos obtenidos mediante los tres procedimientos. Las potencia 

recibida depende de las pérdidas de propagación, de la potencia transmitida por la estación 

base y de las ganancias de las antenas transmisora y receptora. Para el caso del terminal AD 

(terminal con antena directiva): 

 

LGGPP rttADr −++=_  

 

, donde tP  = 28 dBm, tG  = 10 dBi, rG  = 17 dBi y L es el path loss. En el caso del terminal AO 

(terminal con antena omniazimutal), rG  = 2 dBi.  Las pérdidas de propagación para ambos 

terminales se muestran en las figuras 4.19 y 4.20 muestran como aumenta en función de la 

distancia. 
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Figura 4.17  Potencia recibida empírica y 

distintos modelos empíricos versus distancia. 

Terminal empleado: Antena directiva 

 Figura 4.18 Potencia recibida empírica y 

distintos modelos empíricos versus distancia. 

Terminal empleado: antena omniazimutal  
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Figura 4.19  Pérdidas  empíricas y modelos 

distintos de path loss versus distancia. Terminal 

empleado: antena directiva  

Figura 4.20 Pérdidas  empíricas y modelos 

distintos de path loss versus distancia. 

Terminal empleado: antena omniazimutal  

 

De los resultados obtenidos se pueden obtener las siguientes conclusiones: 

 El procedimiento que obtiene un modelo que se aproxima más a los resultados es 

el procedimiento 3.  

 Los valores que se obtienen de γ para ambos terminales son inferiores a 3 por lo 

que es incoherente porque en este tipo de escenario γ debería ser mayor de 3. En 

otras palabras valores de 2<γ <3 se corresponden en ambientes con baja densidad 

de edificios como ocurre en las zonas rurales o semi-rurales.  

 

Se acaba de demostrar que una variación respecto a la tendencia creciente o decreciente 

de la nube de puntos puede dar un valor erróneo de γ si se utilizan todos los puntos para 

encontrar un único modelo lineal de pendiente γ, por el hecho de que el modelo encontrado 

es aquel que minima el error cuadrático medio con todos los puntos. Se puede entender de 

otra manera, si se desprecian los últimos tres puntos de medida para el caso del terminal de 

antena directiva y el último punto para el caso del terminal de antena omniazimutal, se van a 

obtener resultados más coherentes, es decir, γ > 3. El desprecio es debido a que las últimas 

tres medidas se corresponden a un canal mejor (la altura del terreno es mayor que en el resto 

de las posiciones) y por lo tanto un tramo con una pendiente distinta γ. Dicho de otra manera 

si se obtienen nubes de puntos que siguen la tendencia de tramos distintos el modelo 

resultante se comprenderá de pendientes distintas. Por lo tanto si se desprecian las últimas 

tres medidas se obtienen los siguientes modelos encontrados empleando el procedimiento 

descrito en 4.10: 



Capítulo 4. Campaña de Medidas 
 

77

 

( ; ) 54.82 31.57·log( )
( ; ) 54.23 30.4·log( )

AD

AO

L dB d d
L dB d d

= +
= +

 

3.157
3.04

AD

AO

γ
γ

=
=

 

 

Las gráficas de las figuras 4.21 - 4.24 muestran los resultados aplicando los modelos 

acabados de definir. 
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Figura 4.21 Potencia recibida empírica y 

modelo empírico versus distancia Terminal 

empleado: Antena directiva 

Figura 4.22  Potencia recibida empírica y 

modelo empírico versus distancia. Terminal 

empleado: antena omniazimutal  
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 Figura 4.23 Pérdidas  empíricas y modelos 

distintos de path loss versus distancia. Terminal 

empleado: Antena directiva  

Figura 4.24  Pérdidas  empíricas y modelos 

distintos de path loss versus distancia. 

Terminal empleado: Antena omniazimutal  
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Cabe decir que el procedimiento empleado para encontrar un modelo bien ajustado a 

los datos sirve con un mínimo de 2 puntos pero que es habitual utilizar muchos más para 

poder tener una estadística más precisa y exacta. Los modelos encontrados por otras 

entidades como las mencionadas en el estado de arte de este capítulo en diferentes terrenos, 

han sido fruto de un análisis estadístico usando un mínimo  de 100 puntos. De todas formas 

el valor que se ha obtenido del exponente de path loss ahora es coherente porque es 

comparable con lo que se ha obtenido en campañas de medidas disponibles en la literatura. 

 

Tal y como se ha comentado al principio, el modelo encontrado válido para ambos 

terminales ha sido obtenido a partir de hacer el promediado en dB de 30 muestras de la 

potencia recibida en cada posición. Pues bien, se va a tratar a continuación de emplear el 

procedimiento descrito en 4.11, similar al 4.10 pero con la diferencia que ahora se utilizan 

todas las muestras. El vector L es un vector de 180 filas y 1 columna que tiene las pérdidas 

empíricas de path loss  correspondientes a las potencias recibidas aleatorias de cada posición 

y para todas las posiciones. 
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  (4.11) 

Aplicando el procedimiento 4.11 se obtienen los mismos modelos que realizando el 

promediado en dB. Los modelos resultantes se muestran a continuación con sus valores de 

los exponentes de path loss para cada terminal y se grafican en las figuras 4.25 y 4.26. 
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Figura 4.25 Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena directiva 

Figura 4.26 Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena omniazimutal  

 

Una explicación del porque se obtienen los mismos modelos,  es que  la aproximación 

de Least Squares utilizando todos los puntos de la nube obtiene un modelo lineal a partir de 

realizar una media en dB de la aleatoriedad que se tienen en cada posición.  

Ahora que se ha demostrado que se puede considerar una manera correcta hacer un 

promediado en dB de N muestras en cada posición porque el mismo Least Squares lo aplica, 

se utilizará ésta técnica en los escenarios restantes porque se procesan menos datos. En un 

caso real que se quisiera planificar una red se podría obtener un modelo con solo partiendo 

del promediado en dB hecho que facilita un procesado menos costoso y más rápido. 

Para finalizar se van a analizar los resultados que se obtienen haciendo la media en 

lineal en lugar de en dB como se ha hecho anteriormente siguiendo de nuevo el 

procedimiento descrito en 4.10. Si se hace la media en lineal, el resultado de los modelos que 

se obtienen a continuación se grafican en las figuras 4.27 y 4.28. 
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Figura 4.27  Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena directiva 

Figura 4.28 Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena omniazimutal  

 

Se observa que la diferencia entre hacer el promediado en dB y el promediado en lineal 

de las potencias recibidas es muy pequeña, es del orden de unidades de centésimas. Por lo 

tanto si se realiza el promediado en lineal se obtienen unos modelos casi parecidos a los 

obtenidos a partir de un promediado en dB.  

Para terminar este escenario, la figura 4.29 muestra el mapa donde se han realizado las 

medidas juntamente con las indicaciones en colores sobre la modulación y throughput 

downlink medio conseguidos con el terminal de antena directiva. Prestar atención a las 

marcas señaladas en el mapa de cada posición. 

En las posiciones iniciales 1 y 2 se recibe una QAM64 3/4 por estar cerca de la BS 

debido a que en media la potencia de la suma de los ecos recibidos es superior a la 

sensibilidad de la constelación QAM64 3/4 del mismo terminal. 

En la posición 3 la potencia recibida media es menor porque aparecen más obstáculos 

(la mayoría de edificios de hormigón) que causan mayores pérdidas operando a 3.5 GHz, y 

por tanto la BS asigna al SS una constelación menor.  

Siguiendo más adelante se encuentra que en la posición 4 la recepción es nula debido a 

un edificio que obstruye la propagación del rayo directo del lóbulo principal de la antena 

transmisora, hecho que ni por difracción en los edificios ni por reflexión en los objetos de 

alrededor se reciben ecos. Además los obstáculos que se encuentran anteriores empeoran 

más el radioenlace. 

En la posición 5, al estar más alejada del edificio que se encuentra justo delante de la 

posición 4 y al estar a una altura un poco más elevada, se recibe señal aunque débil. La 
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difracción en el edificio de enfrente y la reflexión con los obstáculos laterales empiezan a 

contribuir en la recepción de señal. 

En las posiciones 6 y 7, aún estando a una altura mayor que la posición 5 pero menor 

que la de los edificios, no es suficiente para contrarrestar las pérdidas causadas por la 

multitud de obstáculos y el incremento de distancia con la BS. 

Por último, en las últimas tres posiciones, la altura del terreno se encuentra 

aproximadamente por el nivel de las cubiertas de los edificios y por lo tanto mejora el canal.  

 

 Figura 4.29  Resultados de cobertura WiMAX en entorno semi-urbano 

 

Observando la cobertura de la figura 4.29 se demuestra el potencial de WiMAX usando 

una μBST en un entorno tipo campus. Se comenta además que existen estaciones más 

potentes como por ejemplo la BS modular de BreezeMAX de Alvarion. 
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4.3.3  En escenario semi-rural  
 

En este escenario se va a caracterizar el comportamiento de WiMAX en un entorno 

outdoor del campus de la UAB que pueda asemejarse a una zona semi-rural. El resultado de 

cobertura en este tipo de escenario se muestra en la figura 4.30. Así mismo, las tablas 4.8 y 4.9 

muestran todos los parámetros de canal en downlink y también los que se obtienen en uplink 

utilizando las dos tipos de antenas de terminal WiMAX. Todos ellos han surgido a partir de 

realizar la media en dB (de 30 muestras también) que como ya se ha demostrado en la 

sección anterior es correcto emplear esta aproximación.  

 

Figura 4.30  Resultado de cobertura WiMAX en entorno semi-rural abrupto 
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ANTENA DIRECTIVA (terminal AD) 
 

RSSI  
(dBm) 

SNR 
(dB) 

Modulación Throughput  
Bruto 

(Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
Posición 1: 

100m  -61.87 -74 35 30 QAM64 
3/4 

QAM64 
3/4 11.25 11.25 38 20 

Posición 2: 
200m  -56.3 -73 35 29 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 9 

Posición 3: 
300m  -67.4 -73 30.5 28.7 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 18 

Posición 4: 
400m  -64.7 -74.3 32.46 28.7 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 19 

Posición 5: 
500m  -71.6 -73.57 31.07 26.8 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 6: 
600m  -42.23 -72.27 33.93 29.53 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 -3 

Posición 7: 
700m  -57.5 -73.07 34.07 29.07 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 8: 
800m  -65.57 -76.73 31.77 24.87 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 9: 
900m -74.87 -78.2 26.47 24 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 10: 
1000m  -71.3 -73.83 29.5 27.62 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 11: 
1100m -65.37 -75.93 31.9 24.03 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 12: 
1200m -81.2 -88.73 26.23 17.03 QAM64 

3/4 
QAM16 

1/2 11.25 5 38 20 

Tabla 4.8 Parámetros del radioenlace medidos con la antena directiva. Escenario semi-rural abrupto 

 
ANTENA OMNIAZIMUTAL (terminal AO) 
 

RSSI (dBm) SNR 
(dB) 

Modulación Throughput  
Bruto 

 (Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia SS-
BS (m) 

DL UL DL UL DL UL DL UL DL UL 
Posición 1: 

100m -75.76 .-82 28 24 QAM64 
3/4 

QAM64  
3/4 11.25 11.25 38 20 

Posición 2: 
200m -74.37 -84 28 22 QAM64 

3/4 
QAM16 

3/4 11.25 7.5 38 20 

Posición 3: 
300m -81.03 -88 22.87 -11.73 QAM64 

3/4 
QAM16 

3/4 11.25 7.5 38 20 

Posición 4: 
400m -85.4 -90.4 18.87 12.73 QAM16 

3/4 
QAM16 

1/2 7.5 5 38 20 

Posición 5: 
500m -88 -93.83 15.57 8.93 QAM16 

3/4 
QPSK 

3/4 7.5 3.75 38 20 

Posición 6: 
600m -79.4 -83.63 21.47 16.43 QAM64 

3/4 
QAM16 

3/4 11.25 7.5 38 20 

Posición 7: 
700m -94.03 -97.6 11.03 6.43 QPSK 

3/4 
BPSK 
3/4 3.75 1.88 38 20 
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Posición 8: 

800m -95.4 -97.8 6.3 3 QPSK 
1/2 

BPSK 
3/4 2.5 1.88 38 20 

Posición 9: 
900m -96.3 -98.77 7.1 2.4 QPSK 

1/2 
BPSK 
1/2 2.5 1.25 38 20 

Posición 10: 
1000m -97.5 -98.3 8.6 2 BPSK 

3/4 
BPSK 
1/2 1.88 1.25 38 20 

Posición 11: 
1100m -94.3 -97.2 11 4.8 QPSK 

1/2 
BPSK 
3/4 2.5 1.88 38 20 

Posición 12: 
1200m - - - - - - - - 38 - 

Tabla 4.9 Parámetros del radioenlace medidos con la antena omniazimutal. Escenario semi-rural 

abrupto 

 
 

La RSSI de downlink de ambos terminales se grafica en las figuras 4.31 y 4.32 mostrando 

una comparativa con el modelo resultante que se muestra a continuación juntamente con los 

valores de los exponentes de path loss correspondientes. En cuanto al path loss las gráficas de 

las figuras 4.33 y 4.34 muestran como aumenta en función de la distancia. 

 

( ; ) 89.97 11.03·log( ) 1.103ADL dB d d γ= + − − > =    

( ; ) 84.78 23.47·log( ) 2.347AOL dB d d γ= + − − > =  
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Figura 4.31  Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena directiva 

Figura 4.32 Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena omniazimutal 
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Figura 4.33 Pérdidas  empíricas y modelo 

simplificado  de path loss versus distancia a la 

BS. Terminal empleado: Antena directiva 

Figura 4.34 Pérdidas  empíricas y modelo 

simplificado  de path loss versus distancia a la 

BS. Terminal empleado: Antena omniazimutal 

 

Los valores que se han obtenido para el exponente de path loss no son coherentes 

porque para este tipo de escenario más o menos abrupto descrito en la sección 4.2.2 se espera 

obtener γ  mayores que las que se obtienen para el siguiente escenario semi-rural suave 

también descrito en la 4.2.2. Para hacerse una idea una γ  = 3.9 se corresponde a una zona 

urbana tal como se demuestra en [Val08] mientras que 2<γ <3 se puede corresponder a una 

zona rural [Imp07]. Una explicación de lo que realmente ocurre es que la medida obtenida a 

la primera posición es una medida corrupta, es decir, la potencia recibida medida al ser 

menor que las siguientes potencias recibidas a distancias mayores causa una pendiente de la 

recta que define el modelo cerca de 1. Por lo tanto se debe hacer una corrección en la posición 

1 restando la atenuación del obstáculo que influye en el valor del exponente. Las siguientes 

posiciones no se corrigen porque el obstáculo afecta con mayor magnitud a la posición 1 

como se muestra en la figura 4.10. Para obtener de manera aproximada la atenuación del 

obstáculo/conjunto de obstáculos que obstruye/n la visibilidad a la distancia de 100m se 

emplea la siguiente expresión. El terminal de antena directiva ha sido utilizado para el 

cálculo de la atenuación. 

 
^
( )L dB  = NLOSrLOSr dBmPdBmP )()( −  (4.12) 

 

,siendo  ( )r LOSP dBm  la potencia recibida a una distancia  de la BS en visión directa y 

( )r NLOSP dBm  la potencia recibida sin visión directa a la misma distancia de la BS.  
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RSSI (dBm) SNR (dB) Mod/FEC Pt (dBm) Distancia SS-BS DL UL DL UL DL UL DL UL 

LOS -36.03 -72 34.53 30.23 QAM64 
3/4 

QAM64 
3/4 38 -10 

100m 
NLOS -61.87 -74 35 30 QAM64 

3/4 
QAM64 

3/4 38 20 

Tabla 4.10 Parámetros del radioenlace en condiciones LOS/NLOS a una distancia de la BS de 100m 

 

De la tabla 4.10 se puede estimar que la atenuación del obstáculo u conjunto de obstáculos es: 
∧

)(dBL  = RSSIDL_LOS- RSSIDL_NLOS = 25.84 dB 

Actualizando la posición 1 de las tablas 4.8 y 4.9 con la potencia recibida en 

condiciones LOS se obtienen los siguientes resultados: 
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Figura 4.35 Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena directiva 

Figura 4.36 Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena omniazimutal 
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Figura 4.37  Pérdidas  empíricas y modelo 

simplificado  de path loss versus distancia a la 

BS. Terminal empleado: Antena directiva 

Figura 4.38 Pérdidas  empíricas y modelo 

simplificado  de path loss versus distancia a la 

BS. Terminal empleado: Antena omniazimutal 
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Como se puede comprobar en los resultados obtenidos el valor del exponente γ  es más 

coherente: 2.68 frente al 1.10 del caso anterior. En conclusión los nuevos modelos que definen 

este tipo de escenario para cada uno de los terminales WiMAX empleados son: 

- Modelo de path loss para el terminal WiMAX de antena directiva: 

)·log(8.2697.89);( dddBL AD +=    

2.68γ =  

- Modelo de path loss para el caso del terminal WiMAX de antena omniazimutal: 

)·log(4078.84);( dddBL AO +=    

4γ =  

A continuación se va a analizar el escenario semi-rural suave tal y como se observa en 

el mapa de la figura 4.39 cuyas posiciones de medida se indican sobre el mismo así como los 

resultados de cobertura en cuanto a modulación y throughput bruto medio recibido. 

 

Figura 4.39 Resultado de cobertura WiMAX en entorno semi-rural suave 
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ANTENA DIRECTIVA (terminal AD) 

RSSI (dBm) SNR 
(dB) 

Modulación Throughput  
Bruto (Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
Posición 1: 

100m  -62.57 -74.47 33.57 26.63 QAM64 
3/4 

QAM64 
3/4 11.25 11.25 38 20 

Posición 2: 
200m  -45.97 -72.6 34.97 29.07 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 -3 

Posición 3: 
300m  -55.2 -72.6 34.83 28.87 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 12 

Posición 4: 
400m  -53.96 -72.33 34.95 30 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 14 

Posición 5: 
500m  -50.63 -72.63 34.93 29.3 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 8 

Posición 6: 
600m  -51.7 -72.7 35 29.4 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 10 

Posición 7: 
700m  -70.12 -78.3 30.16 24.13 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 8: 
800m  -66.43 -75.1 32.4 27.2 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 38 20 

Posición 9: 
900m  -79.63 -84.2 23 17.9 QAM64 

3/4 
QAM16 

3/4 11.25 7.5 38 20 

Posición 10: 
1000m -80.13 -83.87 24.3 15.03 QAM64 

3/4 
QAM16 

3/4 11.25 7.5 38 20 

Tabla 4.11 Calidad del canal en distintas posiciones empleando el terminal de antena directiva 

 
ANTENA OMNIAZIMUTAL (terminal AO) 

RSSI (dBm) SNR 
(dB) 

Modulación Throughput  
Bruto (Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
Posición 1: 

100m -71.2 -81.33 29.63 20.53 QAM64 
3/4 

QAM64 
3/4 11.25 11.25 38 20 

Posición 2: 
200m -78.17 -88.4 24.63 14.47 QAM64 

3/4 
QAM16 

1/2 11.25 5 38 20 

Posición 3: 
300m -88.87 -88.17 16 14 QAM16 

1/2 
QAM16 

1/2 5 5 38 20 

Posición 4: 
400m -83.6 -82.87 21.43 19.06 QAM16 

3/4 
QAM64 

2/3 7.5 10 38 20 

Posición 5: 
500m -82.9 -87.03 19.5 13.53 QAM64 

2/3 
QAM16 

3/4 10 7.5 38 20 

Posición 6: 
600m -84.57 -89.23 18.73 14.23 QAM16 

3/4 
QAM16 

1/2 7.5 5 38 20 

Posición 7: 
700m -94.53 -96.83 8.73 4.93 QPSK 

1/2 
QPSK 

1/2 2.5 2.5 38 20 

Posición 8: 
800m -89.83 -93.9 14.5 7.43 QAM16 

1/2 
QPSK 

3/4 5 3.75 38 20 

Posición 9: 
900m  -95.35 -97.82 5.34 4.87 QPSK 

1/2 
BPSK 
1/2 2.5 1.25 38 20 

Posición 10: 
1000m  -97 -96.2 6.43 4.26 QPSK 

1/2 
QPSK 

1/2 2.5 2.5 38 20 

Tabla 4.12 Calidad del canal en distintas posiciones empleando el terminal de antena omniazimutal 
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De la misma manera que se ha realizado en los escenarios semi-urbano y semi-rural 

abrupto, a partir de los resultados sobre las potencias recibidas empíricas empleando ambos 

terminales se puede obtener el modelo que disponga el mínimo error cuadrático medio, es 

decir se deben encontrar aquellos coeficientes del modelo general (4.5) que minimizan el 

error cuadrático medio entre las datos empíricos y el modelo. Los modelos con sus 

coeficientes encontrados para ambos terminales se definen a continuación. 

 

)·log(95.2220.64);(
)·log(21.2185.58);(

dddBL
dddBL

AO

AD

+=
+=

   

2.121
2.295

γ
γ
=
=

 

 Con toda la información que se dispone es posible representar gráficamente la potencia 

recibida en función de la distancia a partir de los modelos hallados. Las siguientes gráficas 

definen la tendencia de la potencia recibida a lo largo del recorrido indicado en el mapa de la 

figura 4.39. 
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Figura 4.40  Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena directiva 

Figura 4.41  Potencia recibida empírica y 

modelo empírico versus distancia a la BS. 

Terminal empleado: Antena omniazimutal 

 

Claramente de las gráficas de las figuras 4.40 y 4.41 se puede decir que el modelo que se 

acerca más a los datos empíricos tiene una pendiente de 2≈γ  (el escenario es oLOS 

(obstructed LOS) en la mayoría de las posiciones). Las posiciones 1, 2, 3, 4, 5,6 son entorno a 

un canal oLOS y más o menos sobre la misma altura respecto el mar mientras que las 

posiciones 7, 8, 9,10 son entorno a un canal NLOS total debido a que la altura del terreno va 
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disminuyendo. Es decir un 60% es casi un canal LOS mientras que el restante es un canal 

NLOS. En este tipo de escenario más suave no es necesario corregir ninguna posición porque 

siendo el valor de γ  menor que el del escenario semi-rural anterior, el obstáculo que rodea el 

edificio donde se encuentra la estación base (una montaña de una altura aproximada de 

entre 2-4 m mayor que la altura del terminal WiMAX sobre el terreno) afecta en gran parte a 

las medidas obtenidas desde las posiciones 1-6. Por lo tanto si se corrige la posición 1 en 

términos de potencia recibida en entorno LOS entonces se deben corregir también las demás 

posiciones. La figura 4.10 muestra el escenario con una vista de perfil.   

 
4.3.4 En escenario indoor 

 
Para los resultados de cobertura en el escenario indoor, en un primer lugar se emplea 

como antena de la estación base una sectorial de 14.5 dBi de ganancia. Debido a las 

limitaciones de potencia para escenarios indoor, la potencia de transmisión de la estación base 

es la mínima que permita cobertura hasta la posición más lejana (posición 3 de la figura 4.42) 

que por las medidas obtenidas Pt,min = 18 dBm. Además, se emplea el algoritmo de 

modulación y codificación adaptativa, y el soporte de ARQ67. 

La figura 4.42 muestra las posiciones con escenarios NLOS a partir de las cuales se han 

obtenido los resultados aproximados de la tabla 4.14. 

 

 

Figura 4.42 Definición de las posiciones NLOS de medida  
 

Tal como se ha comentado anteriormente el análisis que se quiere realizar sirve para la 

obtención de un modelo simplificado de pérdidas de propagación de WiMAX en interiores a 

la banda de 3.5 GHz, a partir de los resultados obtenidos empíricamente. Por ello se parte de 

un modelo de propagación general para escenarios indoor [Gol05] en el que tiene en cuenta 

                                                 
67 Automatic Repetition Request 
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las pérdidas de propagación debidas a la distancia, que no es más que el path loss, y además 

la atenuación o pérdidas provocada por las paredes, los entresuelos entre plantas, y la 

penetración de la señal en el edificio, en el caso en que el la antena de la estación base se 

encontrase localizada en la cubierta del mismo. El modelo según  goldsmith para el cálculo de 

la potencia recibida en escenarios indoor se muestra en 4.13. 

 

1 1
( ) ( ) ( )

f pN N

r t BS TU L i i
i i

P dBm P dBm G G P d FAF PAF
= =

= + + − − −∑ ∑  (4.13) 

donde: 
 

)(dBmPt : Potencia de transmisión de la estación base: 18 dBm. 

BSG : Ganancia de la antena de la estación base: 14.5 dBi (con la antena sectorial) 

TUG : Para el caso de la antena del terminal de usuario: 9 dBi. 
)(dPL : Pérdidas de propagación (en condiciones LOS)   

iFAF : Atenuación causada por el entresuelo ‘i’. 

jPAF  Atenuación causada  por la pared ‘j’. 
 

Con el objetivo de verificar que el modelo puede servir para un canal WiMAX  3.5 GHz 

indoor es necesario obtener los factores FAF68, PAF69 y )(dPL . En un primer lugar se va a 

obtener la atenuación causada por una pared, por ejemplo la existente entre el laboratorio 

Q6-2008 y el Q6-2007 (ver arquitectura de la planta 2 en la figura 4.2a o figura 4.2d). De la 

misma manera que se ha hecho en el escenario semi-rural para el cálculo de la atenuación de 

un obstáculo o conjunto de obstáculos que impedían la visibilidad directa con la BS a una 

distancia de 100m, se recuerda de nuevo el método seguido. 

 

)(dBPAFi  = NLOSrLOSr dBmPdBmP )()( − (4.14) 
 
siendo LOSr dBmP )(  la potencia recibida por el terminal indoor con visibilidad directa a la 

estación base  y NLOSr dBmP )(  la potencia recibida por el terminal indoor sin visibilidad 

directa, ambas obtenidas a la misma distancia de la estación base. El resultado es la 

atenuación causada por cada una de las paredes de la misma planta porque se supone que 

todas ellas están hechas con el mismo tipo de material.  

Otro factor del modelo anterior que se debe obtener son las pérdidas de propagación 

en función de la distancia a la estación base. Por ello se parte de un escenario LOS con 
                                                 
68 Floor Attenuation Factor 
69 Partition Attenuation Factor 
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distancias equiespaciadas 4.4m (con excepción la de 10.4m) de la estación base a lo largo del 

pasillo del mismo edificio. Los resultados se muestran en la tabla 4.13. Se ha realizado un 

promediado logarítmico que como ya se ha demostrado la certeza de que se puede hacer, 

todas las medidas que aparezcan a continuación son fruto de un promediado en dB.  

 
RSSI 

(dBm) 
SNR 
(dB) 

Modulación Throughput  
Bruto 

(Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS70-BS 

(m) 
DL UL DL UL DL UL DL UL DL UL 

4.4 -20 -68 35 30 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

8.8 -15 -64 35 32 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

10.4 -29 -71 35 30 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

13.2 -18 -66 35 29 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -20 

17.6 -17 -70 34 30 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

22 -18 -66 35 32 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

26.4 -24 -72 35 30 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

30.8 -24 -71 35 30 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

35.2 -19 -68 35 32 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -28 

39.6 -24 -73 36 28 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -18 

Tabla 4.13  Parámetros físicos de canal obtenidos a distancias equiespaciadas en escenario LOS 

 
La tabla 4.14 muestra la información anterior pero en el caso NLOS para las 3 

posiciones indicadas en la figura 4.42.  

 
RSSI 

(dBm) 
SNR 
(dB) 

Modulación Throughput  
Bruto 

(Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
4.4 -33 -73 34 26 QAM64 

3/4 
QAM64 

3/4 
11.25 11.25 18 -20 

10.4 -54 -73 35 30 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 18 -3  

26.4 -90 -78 15 25 QAM16 
1/2 

QAM64 
3/4 

5 11.25 18 22 

Tabla 4.14 Parámetros físicos de canal obtenidos a las posiciones de la figura 4.42. Escenario NLOS 
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A partir de los resultados de las tablas 4.13 y 4.14 se puede obtener el PAF aproximado 

de la pared de 30 cm que impide la visibilidad entre la antena sectorial de la estación base  

localizada en el laboratorio Q6-2008 y el terminal WiMAX localizado en la posición 1: 

 

PAF1  = -20 dBm – (-33 dBm) = 13 dB 

 

Por lo tanto la atenuación que causa una pared de cartón yeso de 30 cm de grosor a la 

frecuencia de 3.5 GHz  causa una atenuación media de 13 dB.  

En cuanto a las pérdidas de propagación existentes a una distancia de 4.4m se obtiene  

 
dBdBmdBdBdBmPGGPdP rTUBStL 5.61)20(95.1418)4.4( =−−++=−++==   (4.15) 

 
Comparando el resultado con la ecuación de Friis: 
 

 ( ) 20log( )
4LP d

d
λ
π

=−   (4.16) 

8

9

3·10( 4.4 ) 20log( ) 56.19
4 ·4.4·3.5·10LP d m dB
π

= = − =  

 
El resultado se acerca al que se obtiene empíricamente. La diferencia entre el valor 

obtenido en indoor y el que se obtiene por la ecuación de Friis es que el entorno donde se han 

obtenido los resultados aún siendo LOS, existen objetos alrededor que pueden disminuir las 

pérdidas debido a las reflexiones. En otras palabras, si las medidas se hubiesen obtenido en 

un entorno LOS total como el del espacio libre entonces las pérdidas de propagación a la 

misma distancia de 4.4 m serian de 56.19 dB. Al haber objetos alrededor puede provocar 

interferencias destructivas produciéndose pérdidas de potencia. A este efecto se le conoce 

como fast fading, o desvanecimiento a grande escala debido a la propagación multicamino.  

Con el PAF obtenido se procede a verificar el modelo de predicción de la potencia 

recibida en interiores descrito anteriormente. Se va a tomar la distancia de 4.4 m y la de 10.4 

m.  

 
dBmdBdBdBdBdBmmddBmPr 33135.6195.1418)4.4,( −=−−++==  

dBdBmdBdBdBmmdPL 5.70)29(95.1418)4.10( =−−++==  
dBmdBdBdBdBdBmmddBmPr 5513*25.7095.1418)4.10,( −=−−++==  

 
La predicción de las potencias recibidas obtenidas con el modelo a distancias de 4.4m y 

de 10.4m de la estación base coincide con las potencias recibidas por el terminal WiMAX en 

las posiciones correspondientes. Por lo tanto se puede afirmar que el modelo indicado en 
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4.13 para interiores puede ser aplicado a la tecnología WiMAX a la frecuencia de 3.5 Ghz 

(siempre y cuando se conozca la atenuación de los obstáculos). 

A continuación se procede con los cálculos para obtener ( )LP d , en condiciones LOS, 

basado en el modelo (4.1). Por ello se utiliza el método de Least Squares para buscar el valor  

de γ  tal que la potencia del error entre los resultados medidos y los que se obtienen por el 

modelo sea el mínimo. Es decir el procedimiento seguido es el mismo que el que se ha 

realizado en el escenario semi-urbano en (4.9): 

γ
γ
γγ >−−=

∂
∂

>−−−=∑
=

0)()]()([)(
10

1

2
mod

FdLdLF
i

ieloimedido   (4.17) 

 
donde Lmedido(di) es el path loss obtenido a partir de los resultados empíricos en la distancia di 

y Lmodelo(di) es la media (en dB) del modelo descrito en 4.5 a la distancia di, es decir, sin 

considerar la aleatoriedad del nivel de potencia de la señal recibida. La siguiente expresión 

es el modelo de path loss para WiMAX 802.16-2004 a 3.5 GHz con la incógnita γ  (se fija d0 = 

1m). 

)log(10781.44)2/5.3log(6)log(10)
10·3

10·5.3·4log(20 8

9

mod ddL elo γγπ
+=++=  

 
Aplicando Least squares con los datos recogidos en la tabla 4.13: 
 

2 2

2 2 2

2 2 2

( ) (61.5 44.78 6.43 ) (56.5 44.78 9.44 ) (70.5 44.78 10.17 )
(59.5 44.78 11.21 ) (58.5 44.78 12.46 ) (59.5 44.78 13.42 )
(65.5 44.78 14.22 ) (65.5 44.78 14.89 ) (60.5 44.78 15.47 )
(65.5 44.

F γ γ γ γ

γ γ γ

γ γ γ

= − − + − − + − −

+ − − + − − + − −

+ − − + − − + − −

+ − 2 278 15.98) 3235.10 1613.6 4381.7γ γ− = + −

 

36.107.43812.3227)(
=>−−=−=

∂
∂ γγ

γ
γF

 

 
  El valor obtenido para el exponente de path loss no tiene mucha coherencia ya que 

debería acercarse a 2, porque el canal donde se obtuvieron los resultados era LOS, cercano al 

del espacio libre. Para obtener un modelo de path loss fiable fue necesario realizar las 

medidas en un pasillo 3 veces más largo y recoger muestras cada 14.8 m. Entonces se 

obtuvieron también otras 10 medidas con un canal LOS pero en una zona diferente fuera del 

edificio Q6. Los resultados obtenidos en media se muestran en la tabla 4.15. 
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RSSI 
(dBm) 

SNR 
(dB) 

Modulación Throughput  
Bruto (Mbps) 

Potencia 
Transmisión 

(dBm) 

Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
24 -30 -72 35 29 QAM64 

3/4 
QAM64 

3/4 
11.25 11.25 13 -28 

38.8 -37 -71 35 29 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -24 

53.6 -37 -72 35 29 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -20 

68.4 -33 -72 34 29 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -23 

83.2 -47 -73 35 30 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -3 

98 -56 -74 35 29 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -3 

112.4 -60 -73 34 28 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 2 

127.2 -40 -71 33 29 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -15 

142 -40 -72 34 29 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -17 

156.8 -48 -71 35 28 QAM64 
3/4 

QAM64 
3/4 

11.25 11.25 13 -13 

Tabla 4.15 Parámetros físicos de canal obtenidos a diferentes distancias de  la BS en entorno LOS. 

 

Con los nuevos datos de la tabla 4.15 se procede de nuevo al cálculo del valor del 

exponente de path loss siguiendo el procedimiento anterior: 

 

γγγ

γγγ

γγγ

γγγγ

133665.365212774)96.2178.445.84(
)52.2178.445.76()05.2178.445.76()51.2078.445.96(

)91.1978.445.92()20.1978.445.83()35.1878.445.69(
)29.1778.445.73()89.1578.445.73()80.1378.445.66()(

22

222

222

22

−+=−−+

−−+−−+−−+

−−+−−+−−+

−−+−−+−−=F

 

83.10133667305)(
=>−−=−=

∂
∂ γγ

γ
γF

 

 
El valor del exponente de path loss se acerca más al valor del espacio libre; no es 

exactamente 2, porque el escenario no es espacio libre, el espacio libre es solo un modelo 

teórico que predice las pérdidas de propagación en un canal ideal sin obstáculos ni objetos 

alrededor.  Por otro lugar el valor es coherente porque según [Kiv01] [Xu07] un valor del 

exponente menor a 2 es debido al efecto de guía de ondas que asemeja el pasillo. Por lo tanto 

y como aproximación, el modelo simplificado de path loss de WiMAX 802.16-2004 a 3.5 GHz 

para interiores es: 

 
)log(3.18781.44)(5.3_mod ddL WiMAXelo +=      1.83γ =  
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Ahora que ya se tiene el modelo simplificado de path los, se va a utilizar a continuación 

en el modelo de predicción de la podenca recibida (4.13) para comprobar si el resultado se 

acerca a los que se obtienen a experimentalmente. 

 

-   Potencia recibida en la posición1 
dBmdBdBdBdBmmddBmPr 06.2813))4.4·log(3.1878.44(95.1418)4.4,( −=−+−++==  

 
- Potencia recibida en la posición2 

dBm
dBdBdBdBmmddBmPr

89.47
13·2))4.10·log(3.1878.44(95.1418)4.10,(

−=
−+−++==

 

 
- Potencia recibida en la posición3 

dBm
dBdBdBdBdBmmddBmPr

3.81
13·4))4.26·log(3.1878.44(95.1418)4.26,(

−=
−+−++==

 

 
Los resultados que se obtienen en las posiciones 1 y 2 con el modelo encontrado se 

acercan a los obtenidos de manera empírica en las posiciones de la figura 4.42. La diferencia 

entre lo que se predice por el modelo y lo que se mide, como ya se ha comentado 

anteriormente es debido a la propagación multicamino y además se cuenta con un nuevo 

efecto, local scattering o dispersión causada por pequeños cuerpos con una cierta sección 

recta radar σ [m2] (como si se tratase de un blanco radar), muy típico en escenarios de 

interiores. 

 

La potencia que se predice en la posición 3 es prácticamente la que se puede medir 

experimentalmente. La potencia recibida que se ha podido medir en esta posición fluctúa 

entre -80 dBm y -90dBm. Por lo tanto se puede asegurar que el resultado que se predice por 

el modelo de (4.13)  juntamente con el modelo de path loss con exponente de 1.83 obtenido a 

partir de unas medidas realizadas en escenario LOS es válido para poder hacer una 

aproximación de la potencia media recibida en una cierta distancia de la estación base en 

interiores conociendo la atenuación de las distintas particiones. 

 

La gráfica de la figura 4.43 representa en azul la aproximación  least squares del modelo 

simplificado de path loss y los puntos en rojo como las potencias recibidas medidas 

experimentalmente. Se observa como los resultados empíricos son variaciones o 

fluctuaciones de la media obtenida por least squares y que estos se encuentran entre 

aproximadamente entre 1dB y 15 dB. Cabe mencionar que con mayor número de medidas 

los resultados del modelo podrían ser más exactos.  
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aproximación least squares

 
Figura 4.43 Comparativa entre la predicción del modelo 

de potencia recibida (azul) y las potencias recibidas 
medidas (puntos en rojo) 

 
A continuación se va a medir la potencia recibida en la planta 1 del edificio a una 

distancia aproximada de 8.8m de la estación base. Posteriormente se obtiene el FAF del 

entresuelo de 117 cm de grosor existente entre la planta 2 y la planta 1 y finalmente se 

compara la potencia recibida por el terminal y la que se obtiene por el modelo de predicción. 

Los resultados del canal obtenidos a una distancia de 8.8m, en la planta inferior se muestran 

en la tabla 4.16 (estos se han obtenidos para una potencia de transmisión de 13 dBm).  

 
RSSI (dBm) SNR (dB) Mod/FEC Pt (dBm) Distancia SS-BS 
DL UL DL UL DL UL DL UL 

LOS -19 -60 35 33 QAM64 
3/4 

QAM64 
3/4 

13 -28 8.8m 

NLOS -76.5 -72 26 29 QAM64 
3/4 

QAM64 
3/4 

13 7 

Tabla 4.16 Parámetros físicos de canal obtenidos a una distancia de 8.8m  

de la BS para  el cálculo del FAF 

 
A partir de la tabla 4.16 se puede obtener de forma aproximada la atenuación de la 

partición entre la planta 2 y la planta 1 de la misma manera que se realizó para obtener la 

atenuación de una pared empleando la ecuación (4.12). 

 
FAF = -19 – (-76.5) = 57.5 dB de atenuación  la frecuencia de 3.5 GHz. 

 
 
La potencia recibida según 4.13 es: 
 

Pr = 13 dBm +14.5 dB +9 dB -(44.78 +18.3*log(8.8)) – 57.5 = -83.06 dBm 
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Se demuestra que el modelo sirve para obtener una aproximación de la potencia 

recibida a una cierta distancia (en el caso que existan obstrucciones es necesario saber la 

atenuación de estos). Por ejemplo la potencia recibida en la última planta a una distancia de 

21.42 m de la BS sería aproximadamente (suponiendo que la atenuación que añade la 

partición entre la planta 1 y la planta 0 es también de 57.5 dB): 

 
Pr2 = 13+14.5+9-(44.78+18.3*log(21.42)) – 2*57.5 = -147.6 dBm 

 
La conclusión es que con una potencia de 13 dBm no es suficiente para cubrir la última 

planta del edificio ya que la potencia que se recibe es menor a la sensibilidad de una BPSK 

1/2 que es de -100 dBm, para el equipo utilizado. En el caso de transmitir a la máxima 

potencia de 28 dBm tampoco no es suficiente para dar servicio a la planta 0 debido a que la 

potencia recibida sigue siendo menor a la sensibilidad de la  BPSK 1/2.  

El modelo analizado hasta ahora es un modelo que permite calcular la potencia 

recibida en un entorno indoor a partir de las pérdidas de propagación en espacio libre y de la 

atenuación causada por las particiones entre plantas y las paredes. El inconveniente que 

presenta es que se debe tener un conocimiento sobre la atenuación de cada tipo diferente de 

partición y en el caso de que existan muchas puede llegar a ser inviable la utilización de este 

modelo. Por esta razón se podría optar a la utilización del modelo de path loss pero con un 

exponente de path loss adecuado para un escenario indoor siendo normalmente mayor que 5. 

Para el escenario donde se realizan las medidas se va a obtener su exponente de path loss 

correspondiente a partir de los datos de las potencias recibidas de la tabla 4.17 y luego se 

compara el nuevo modelo resultante con el modelo obtenido anteriormente. La tabla 4.17 

muestra las pérdidas de propagación para cada posición de la figura 4.42. 

 
Distancia SS-BS L (dB) 

4.4m 74.5 
10.4m 95.5 
26.4m 131.5 

Tabla 4.17 Pérdidas de propagación para las tres  

posiciones de la figura 4.42 

 

γγγ

γγγ

2.388098.34610976]22.1478.445.131[

]17.1078.445.95[]43.678.445.74[)]()([)(

22

222
mod

3

1

−+=−−+

−−+−−=−=∑
=

dBLdBLJ elo
i

empírico  

 

59.502.388096.693)(
=>−−=−=

∂
∂ γγ

γ
γF  
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El nuevo modelo obtenido de WiMAX 3.5GHz para interiores por medio de Least Squares es: 
 

)log(9.55781.44)(_5.3_mod ddL indoorWiMAXelo +=  
 
5.59γ =  

 
Con ese nuevo modelo no es necesario obtener la atenuación de cada obstáculo que 

aparece entre la antena transmisora y la antena receptora porque de alguna manera la 

atenuación causada por los obstáculos es “absorbida” por el exponente de path loss (por esta 

razón tiene un valor muy elevado). A continuación se compara este modelo con el que se ha 

optado a lo largo del análisis en el escenario indoor: 

 
- Potencia recibida en la posición1 
 

dBmdBdBdBdBmmddBmPr 25.39))4.4·log(9.5578.44(95.1418)4.4,( −=+−++==  
- Potencia recibida en la posición2 

 

dBm
dBdBdBdBmmddBmPr

13.60
))4.10·log(9.5578.44(95.1418)4.10,(

−=
+−++==

 

- Potencia recibida en la posición3 
 

dBm
dBdBdBdBdBmmddBmPr

75.82
13·4))4.26·log(3.1878.44(95.1418)4.26,(

−=
−+−++==

 

 
A modo resumen la tabla 4.18 muestra una comparativa entre ambos modelos de path 

loss obtenidos empíricamente: 

 
Distancia SS-BS Pr (dBm) con el 

modelo 4.1  
Pr (dBm) con modelo 
de exponente de path 

loss 5.59 

|Error entre modelos 
(dB)| 

4.4m -28.06 -39.25 11.19  
10.4m -47.89 -60.13 12.24  
26.4m -81.3 -82.75 1.45 

Tabla 4.18 Comparativa y error absoluto entre los dos modelos de predicción 

 
La tabla 4.18 muestra el error que se comete por el hecho de utilizar un modelo en el 

que no tiene en cuenta el número de obstáculos además de su atenuación  y un modelo que 

sí lo tiene en cuenta. El modelo de interiores descrito en 4.13 se acerca más a las medidas 

obtenidas que el otro modelo simplificado de path loss para interiores. La explicación es 

porque el segundo modelo supone que existen obstáculos entre las antenas transmisora y 
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receptora pero sin embargo no los cuantifica; supone una distribución uniforme de 

obstáculos. De todas maneras no son valores exagerados.  

Ahora que ya se conoce el modelo simplificado de path loss se procede a continuación 

el análisis en diferentes puntos de la planta 2 y la planta 1 del edificio Q6. La figura 4.44 

muestra la indicación de los puntos de medida en la planta 2 y la planta 1. La posición de la 

BS indicada se corresponde con las medidas de la planta 2. Para las medidas en la planta 1 se 

ubica la BS 3.6 m más adelante en dirección a la posición 6. Para obtener las distancias entre 

la BS y el SS localizado en cada una de las indicadas posiciones se ha empleado 

trigonometría. Por otro lado, todas las medidas obtenidas han sido fruto de alinear las 

antenas y luego promediar en dBs los datos recibidos. Los resultados obtenidos que se 

muestran en la tabla 4.19 son aproximaciones al valor medio real, pero el objetivo no es que 

la predicción del modelo cuadre con lo que se mide sino que se aproxime como se ha 

comentado en la sección 4.3.1. Las posiciones p1, p2 y p3 no analizan porque ya se ha 

realizado anteriormente. 

 

Figura 4.44 Indicaciones de las posiciones de medida en la planta 2 y la planta 1 del edificio 

 



Capítulo 4. Campaña de Medidas 
 

101

 

RSSI (dBm) SNR 
(dB) Modulación 

Throughput 
Bruto 

(Mbps) 

Potencia 
Transmisión 

(dBm) 
Distancia 
SS-BS (m) 

DL UL DL UL DL UL DL UL DL UL 
Planta 2 

Posición p1: 
4.4m 

-33 -73 34 26 QAM64 
3/4 

QAM64 
3/4 11.25 11.25 18 -20 

Planta 2 
Posición p2: 

10.4m 
-54 -73 35 30 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 -3 

Planta 2 
Posición p3: 

26.4m 
-90 -78 15 25 QAM16 

1/2 
QAM64 

3/4 5 11.25 18 22 

Planta 2 
Posición p4: 

18.97m 
-57 -72 34 29 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 1 

Planta 2 
Posición p5: 

11.89m 
-48 -72 35 30 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 -1 

Planta 2 
Posición p6: 

8.8m 
-35 -72 35 29 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 -15 

Planta 2: 
Posición p7:  

17.22m 
-50 -73 35 29 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 -2 

Planta 1 
Posición p8: 

17.25m 
-76 -84 25 20 QAM64 

3/4 
QAM16 

3/4 11.15 7.5 18 22 

Planta 1 
Posición p9: 

9.67m 
-78 -72 25 30 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 20 

Planta 1 
Posición 

p10: 6.46m 
-59 -72 34 30 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 15 

Planta 1 
Posición 

p11:10.92m 
-67 -72 30 30 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 11 

Planta 1 
Posición 

p12: 16.88m 
-74 -73 28 28 QAM64 

3/4 
QAM64 

3/4 11.25 11.25 18 22 

Tabla 4.19 Resultados obtenidos con el terminal Self-Install en distintas posiciones de la planta 2 y la 

planta 1 del edificio Q6 

 

Ahora que ya se tienen los datos sobre las potencias recibidas en downlink, entre otros 

parámetros se va a realizar una comparativa con el modelo de interiores que se recuerda de 

nuevo: 
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∑∑
==

−−+−++=
pf N

i
i

N

i
ir PAFFAFddBdBdBmdBmP

11
))(10log*3.1878.44(95.1418)(  

A parte de las paredes como PAF, también existen otros obstáculos que afectan a la 

potencia recibida, de los cuales se ha tenido que obtener estudiar a grosso modo su atenuación 

mediante medidas en LOS y NLOS a la misma distancia como se muestra en la tabla 4.20. 

 

  Bloque armario Puerta 
 Grosor (cm) 71.5 4.5 
 Distancia tx-

rx 
3.6m 3.6m 

LOS -22 -22 Pr (dBm) NLOS -33 -24.5 
 L = PrLOS-

PrNLOS 
11 dB 2.5 dB 

Tabla 4.20 Análisis de la atenuación causada por otras particiones que 

 separan el pasillo  de la sala de la BS 

 

Ahora que ya se tiene toda la información  en cuanto a la atenuación añadida por 

diferentes particiones se procede a continuación al cálculo de las potencias recibidas en cada 

punto empleando el modelo y luego hacer una comparativa. Para saber el número de 

particiones que atraviesa la señal, se ha guiado con la figura 4.44. 

 

Cálculo de las potencias recibidas en la planta 2 

_ 4 ( , 18.97 ) 18 14.5 9 (44.78 18.3·log10(18.97)) 2·13 2.5 55.17r pP dBm d m dBm= = + + − + − − =−

_ 5 ( , 11.89 ) 18 14.5 9 (44.78 18.3·log10(11.89)) 13 11 46.96r pP dBm d m dBm= = + + − + − − = −

_ 6 ( , 8.8 ) 18 14.5 9 (44.78 18.3·log10(8.8)) 11 31.56r pP dBm d m dBm= = + + − + − =−  

_ 7 ( , 17.22 ) 18 14.5 9 (44.78 18.3·log10(17.22)) 13 11 49.9r pP dBm d m dBm= = + + − + − − =−  

 

Cálculo de las potencias recibidas en la planta 1 

Con el FAF que se ha obtenido en su momento de 54.5 dB, si se emplea este valor 

entonces los resultados del modelo se alejan bastante de los datos empíricos. Es por esta 

razón que se ha vuelto a medir de nuevo el FAF a 6.46 m en LOS, distancia correspondiente a 

la posición 10. El nivel de potencia a esta distancia es de -12 dBm con lo que conlleva a un 

nuevo FAF = 47 dB, a grosso modo. Con este FAF se procede con el cálculo de las potencias 

recibidas en la planta 1: 
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_ 8 ( , 17.25 ) 18 14.5 9 (44.78 18.3·log10(17.25)) 47 13 85.91r pP dBm d m dBm= = + + − + − − =−  

_ 9 ( , 9.67 ) 18 14.5 9 (44.78 18.3·log10(9.67)) 47 13 81.31r pP dBm d m dBm= = + + − + − − =−

_ 10 ( , 6.46 ) 18 14.5 9 (44.78 18.3·log10(6.46)) 47 65r pP dBm d m dBm= = + + − + − =−  

_ 11 ( , 10.92 ) 18 14.5 9 (44.78 18.3·log10(10.92)) 47 69.28r pP dBm d m dBm= = + + − + − =−  

_ 12 ( , 16.88 ) 18 14.5 9 (44.78 18.3·log10(16.88)) 47 72.74r pP dBm d m dBm= = + + − + − =−  
 

La tabla 4.21 muestra una comparativa entre las potencias medidas experimentalmente 

y las que se obtienen por el modelo, así como el error existente. Las casillas sin número es 

porque no se ha considerado aquél PAF en el modelo. 

 

Distancia 
SS-BS (m) 

1. Pr_ 
empirico 

(dBm) 

PAF_puertas 
(dB) 

 

PAF_armarios 
(dB) 

PAF_paredes 
(dB) 

FAF 
(dB) 

2. Pr_ 
oldsmith  

(dBm) 

Abs(1-
2) (dB) 

Planta 2 
Posición p4: 

18.97m 
-57 2*2.5 - 2*13 

- 
-55.17 1.83 

Planta 2 
Posición p5: 

11.89m 
-48 - 11 13 

- 
-46.96 1.04 

Planta 2 
Posición p6: 

8.8m 
-35 - 11 - 

- 
--31.56 3.44 

Planta 2: 
Posición p7:  

17.22m 
-50 - 11 13 

- 
-49.9 1.9 

Planta 1 
Posición p8: 

17.25m 
-76 - - 13 47 -85.91 9.91 

Planta 1 
Posición p9: 

9.67m 
-78 - - 13 47 -81.31 3.31 

Planta 1 
Posición p10: 

6.46m 
-59 - - -  47 -65 6 

Planta 1 
Posición 

p11:10.92m 
-67 - - - 47 -69.28 2.28 

Planta 1 
Posición p12: 

16.88m 
-74 - - - 47 -72.74 1.26 

Tabla 4.21  Resultados de campo obtenidos en cada una de las posiciones de la figura 4.44.  

 
El error que se obtiene en la tabla 4.21 no es muy exagerado. Es normal tener errores 

menores de 10 dB cuando se realizan aproximaciones de este tipo. Por otro lugar no es fácil 

saber exactamente el número de obstáculos y su atenuación que causa a la onda 
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electromagnética durante su propagación por el canal inalámbrico. Por ejemplo si que es 

cierto que el conjunto paredes/entresuelos que aparecen entre BS y SS afectan por igual a 

toda la onda electromagnética.  

Aquí acaba el capítulo 4 correspondiente a una campaña de medidas llevado a cabo en 

diferentes tipos de escenarios.  
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5 DEMOSTRACIÓN DEL PROYECTO 
INTERRURAL 

 
 

Este proyecto experimental  basado en el estudio de la tecnología WiMAX 802.16-2004 

ha formado parte de un proyecto PROFIT de dos fases aprobado por el MINISTERIO DE 

INDUSTRIA, TURISMO Y COMERCIO con referencia FIT-330210-2007-57 llamado 

InterRural. En dicho proyecto han participado varias empresas (Hispasat, Telefónica I+D, 

Iber-X,Gigle) y también la misma Universitat Autònoma de Barcelona (UAB).  El principal 

objetivo del proyecto InterRural es proponer y testear alternativas a ADSL para dar acceso a 

Internet a zonas rurales. La primera fase del proyecto InterRural que se demuestra en este 

capítulo trata de comparar dos alternativas de tecnologías radio competitivas, ambas 

integradas con satélite: WiMAX y la variante de WiFI a 5 GHz conocida también por su 

estándar IEEE 802.11a. La variante 802.11a WiFI permite realizar radioenlaces con visión 

directa y ofrecer coberturas no superiores a 1-1.5 Km con el uso de antenas muy directivas. 

Se demuestra en la sección 5.4 que WiFI supera a WiMAX en cuanto a throughput solo en 

canales LOS ya que en canales NLOS la tecnología no es capaz de operar debida a su elevada 

frecuencia de operación. 

La duración de la primera fase del proyecto InterRural ha sido de 6 meses, desde 

octubre 2007 - marzo 2008, ambos incluidos.  

5.1 Estado de arte 
 

Antes de continuar con el estudio del proyecto InterRural se da a conocer en esta 

sección por otras entidades que la integración WiMAX-Satélite u otras tecnologías se han 

desplegado en ciertos lugares. Los artículos se muestran en la sección de referencias. 

Empezando con el artículo de [Zot07] se explota una arquitectura de red en la que 

combinan la micro estación base WiMAX Alvarion BreezeMAX del proyecto con un 

radioenlace WiFI para ofrecer servicios a Internet vía satélite a un conjunto formado por una 
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PDA, un ordenador portátil, un PC de escritorio y un teléfono IP.  Los servicios multimedia 

que se ofrecen a los clientes WiFI son: VoIP, Televisión por IP (mediante protocolo H.264), y 

servicios http. 

El artículo de [Cor05] presenta un análisis de las diferentes posibilidades de conexión 

para la comunicación de voz y datos que se puede implementar en las zonas rurales de la 

costa ecuatoriana. El artículo se divide en 2 partes. En la primera parte se evalúa  las posibles 

soluciones de Sistemas de Comunicaciones Inalámbricas (SCI) realizando un concienzudo 

análisis sobre las tecnologías WiFi71, y WiMAX. Además, se ha propuesto una arquitectura 

analizando los requerimientos de la misma y posibles variantes con sus ventajas y 

desventajas. Según [Cor05] algunas demostraciones sobre WiMAX se han realizado en 

California, US, y también en Reino Unido, con resultados muy favorables y otras redes de 

prueba/comerciales están siendo instaladas  

El artículo de [Owe06] explica las diferentes tecnologías involucradas para ofrecer 

básicamente servicios de voz en comunidades locales de zonas rurales a través de una red IP 

conectada a Internet vía satélite. El proyecto del artículo ha sido desarrollado en Mongolia y 

Vietnam ejecutado por el organismo LMI (USAID’s Last Mile Initiative). La nueva 

combinación de la red IP entregada a la comunidad mediante satélites de bajo coste, servicios 

VoIP ofrecidos a través de tecnologías de conmutación por soft sobre la red, en combinación 

con  su distribución wireless a través de WiMAX y/o WiFI, y los teléfonos VoWIFI que están 

surgiendo, proporciona en la primera vez una nueva era de telecomunicaciones avanzadas 

en las zonas rurales.  

[Ret06] desarrolló un artículo en el que comenta los desafíos y las aplicaciones de 

Wireless IPTV72  sobre WiMAX.  IPTV es crucial para aquellas áreas con escasos recursos para 

obtener servicios con elevada calidad como la televisión. IPTV es una de las alternativas 

viables que utilizan las operadoras para la entrega de televisión al usuario final, sin embargo, 

en áreas con dificultad de acceso por cable a la red de la operadora como es el caso de las 

zonas rurales, ofrecer IPTV podría llegar  a ser caro. Por este motivo se utiliza WiMAX como 

alternativa de transporte de IPTV debido a que puede ofrecer diferentes calidades de 

servicio, diferentes anchos de banda, elevadas tasas de transmisión, robustez frente canales 

NLOS y elevadas distancias con la estación base en bandas de frecuencia licenciadas y 

exentas de licencia. 

                                                 
71 Wireless Fidelity 
72 Internet Protocol-Television 
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Además de los artículos mencionados también existen notícias de prensa que informan 

la situación de WiMAX en España o en el resto del mundo.  La noticia [Not2] afirma que han 

existido infrastructuras WiMAX de Alvarion a zonas de Tarragona o la Valle de Aran por 

medio del operador IberBanda. Alvarion también trabaja suministrando equipos a 

Telefónica.   

Mobile WiMAX ya está en funcionamiento en Korea [Not3] y se conoce como WiBRO. 

El servicio comercial WiBRO se lanzó en junio del 2006  y la tarifa ronda los 35 euros. El 10 

de febrero de 2006 Telecom Italia, la telefonía dominante e Internet Service Provider en Italia, 

junto con Samsung Electronics de coreana, demostraron al público un servicio de red de 

WiBro durante los juegos olímpicos de invierno del 2006, llevados a cabo en Turín, con una 

velocidad de bajada de 10 Mbit/s y una de subida de algunos centenares de kbit/s incluso 

en movimiento hasta 115 Kmp/h. En el mismo acontecimiento aseguraron un futuro de 20-

30 Mbit/s para el final de este año (2006) y 100+ Mbit/s de bajada / 1+ Mbit/s de subida en 

2008.  

Carlos Martínez García, Spain Channel Manager de Alvarion anuncia en el artículo 

[Not4] que se han llevado a cabo varios proyectos en Ayuntamientos de Cataluña donde 

sobre una red de transporte WiMAX de Alvarion, se han desplegado múltiples servicios para 

el municipio como gestión de cámaras de trafico, comunicaciones VoIP y datos de la red 

municipal, así como interconexión de servicios municipales de Internet para la ciudadanía.  

Raymond Forado Bechimol  informa en [Not5] que desde Alvarion actualmente ya 

tienen desplegada –en cerca de 150 países incluyendo a España- redes WiMAX de banda 

ancha entre otros clientes y operadores como Iberbanda, Euskatel en el País Basco, así como 

los proyectos de extensión de banda ancha en Cataluña, y el más extenso de todos en Castilla 

y Léon. En este último, a principios del 2006, se desplegó una red WiMAX de Alvarion por 

parte del operador Iberbanda y en abril del 2007 ya existían cientos de estaciones base y 

miles de unidades de cliente dando servicios de banda ancha de alta velocidad tanto de voz 

como de datos, tanto para hogares como para empresas y PYMES. 

En Cádiz también se comercializa WiMAX tanto para voz, datos y televisión [Not6]. Se 

ha implantado conexiones WiMAX de forma comercial en la ciudad de Sevilla por el 

operador Instanet (Clearwire). El operador de telecomunicaciones Marin Telecom de 

Andalucía ofrece a través de su red WiMAX aeromax con una superficie de cobertura actual 

de 2000 km² varias modalidades de banda estrecha hasta banda ancha de hasta 34 Mbps y 

también línea de voz/fax a través del mismo sistema en el Vinalopó Mitjà, Baix Vinalopó y 

Vega Baja. Actualmente en Murcia, concretamente en Bullas también se ha instalado un 



Despliegue y análisis de la cobertura de una red WiMAX basada en IEEE 802.16-2004 
 
108 

operador de WiMAX que ofrece datos en banda ancha, pero no funciona correctamente. En 

la localidad valenciana de Ontinyent, “OSF Xarxa de Telecomunicacions” ofrece WIMAX de 

hasta 1 Mbps simétrico, garantizado al 100%. Por otro lugar la empresa “Neomedia” ha 

realizado los proyectos con infraestructura WiMAX sobre banda de uso común que más 

tráfico están soportando; el Ayuntamiento de Alcorcón dispone de una red WiMAX formada 

por más de 70 radioenlaces con soporte a más de 100 cámaras, agregando un total 

aproximado de 1,5 Gbps en la banda de 5 GHz. Otro gran mercado de actuación de estas 

infraestructuras WiMAX es el de backhaul de infraestructuras Mesh. De la misma manera, 

Neomedia ha desplegado un backhaul WiMAX que da soporte a la Red inalámbrica Mesh del 

Ayuntamiento de Barcelona, iniciada en la zona de 22@ y en María Cristina. Además, Lleida 

se ha convertido en una de las zonas WiMAX de España mejor cubiertas, gracias a la 

intervención de NXT-Telecom, operador catalán, que dota de cobertura a más de 500 

poblaciones. Cuenta con infraestructura propia de repetidores, con total independencia de 

operadoras como Telefónica. 

En varios países de América Latina WiMAX ya se ha implementado, tanto 

experimental como comercialmente [Not6]. En la India ya se ha desarrollado WiMAX con un 

total de 250 millones de usuarios conectados [Not7] y con una cobertura a un total de 400 

ciudades ofreciendo un ancho de banda de 1.5 Mbps. 

Las noticias de Ibersystems [Not8] publican que Alvarion, uno de los principales 

fabricantes de soluciones de banda ancha inalámbrica, de diseño y despliegue de soluciones 

WiMAX, ha anunciado la disponibilidad de su nuevo sistema BreezeMAX, diseñado para 

abarcar 802.16e, cuya misión es responder la cada vez mayor demanda de soluciones basadas 

en la última versión del estándar WiMAX. Actualmente está en funcionamiento en diferentes 

países del planeta como en Angola, Costa Rica, El Salvador, Francia, Guatemala, Japón, 

México, Noruega, Rudia, EE.UU. y España.  

El objetivo del proyecto InterRural trata de una comparativa experimental de la 

calidad que ofrecen los radioenlaces WiFi/WiMAX a aplicaciones multimedia como por 

ejemplo VoIP (llamadas IP y videoconferencia) a través de satélite pero en lugares parecidos 

a zonas rurales alrededor de un campus universitario y en dos tipos de entornos: LOS y 

NLOS. Los artículos de [Owe06] y [Cor05] están basados con la misma idea del proyecto 

InterRural y en cambio el artículo [Ret06] estudia la viabilidad de televisión por IP a través 

de WiMAX, que no ha sido contemplado por el proyecto InterRural.  

Por otro lugar, en el servicio de videoconferencia testeado en el proyecto InterRural 

participaron tres usuarios conectados a Internet a través de distintas tecnologías: el primer 
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usuario conectado a Internet por medio de una LAN, el segundo mediante WiFi-Satélite y el 

tercero mediante WiMAX-Satélite. Los dos últimos simulaban un usuario que podría estar en 

una zona rural mientras que el primero podría estar localizado en cualquier otra parte del 

mundo. Con esta videoconferencia a tres se pudo comprobar que el retardo de la voz y el 

vídeo tanto para WiMAX como para WiFi era despreciable, incluso en canales NLOS 

WiMAX era capaz ofrecer buenas prestaciones. No obstante no se realizaron 

videoconferencias con más de un usuario conectados a la BS WiMAX para estudiar el efecto.  

5.2 Descripción del demostrador 
 

El demostrador implementa una red PMP73 de bajo coste para el acceso por banda 

ancha en entornos rurales, en la que se integran diversas tecnologías terrestres por satélite. El 

acceso vía satélite mediante la tecnología DVB-S suele ser más rentable en aquellos lugares 

en los que no resulta interesante para los proveedores de servicios Internet desplegar redes 

terrestres, tanto de radio como de cable, para pocos usuarios.  

La tecnología vía satélite tiene como objetivo hacer llegar la señal hasta zonas remotas 

de difícil acceso. El esquema del demostrador se muestra en la figura 5.1.  

 

 
 

Figura 5.1 Arquitectura de red del demostrador 

 

                                                 
73 Point-to-Multipoint 
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La topología de red elegida consta de un nodo central o HUB, que actúa de puente 

entre los enlaces satélite y terrestre permitiendo conectar la red de Internet con cada uno de 

los bucles de acceso local  o de última milla (last mile). Por otro lado existe el terminal RCST 

(Return Channel Satellite Terminal)  cuya función es conectar al satélite las estaciones base 

WiFi y WiMAX y realizar la adaptación de los protocolos participantes en la red. Los 

elevados costes de implementar dicha red de manera cableada hacen necesaria la definición 

de los escenarios en los que se combina la tecnología satélite con algunas tecnologías de 

acceso inalámbricas o WLL74 o de acceso por la red eléctrica (PLC, Power Line Connection) o 

una combinación de todas ellas.  Las tecnologías de acceso inalámbricas son eficaces cuando 

existen gran número de usuarios que se conectan a la estación base ya que los elevados 

anchos de banda que estas tecnologías ofrecen permiten compartir el mismo bucle local radio 

a un elevado número de usuarios (ej: mayor de 400 usuarios), es decir, el ancho de banda del 

sistema es compartido para todos los usuarios que se conectan a la estación base (20 MHz de 

ancho de banda para la tecnología WiFi y 3.5 MHz para la tecnología WiMAX 802.16-2004). 

5.3 Arquitecturas 
 

5.3.1 Arquitectura satélite 
 

La arquitectura de satélite de Hispasat que forma parte del demostrador utiliza la 

plataforma transparente RCS para la transmisión de datos. La topología de una red de 

satélite es de tipo estrella donde el nodo central es el HUB y los puntos de acceso adyacentes 

son los satélites. La figura 5.2 muestra la arquitectura de red satélite y a continuación se 

describen los terminales que intervienen en la interconexión entre el canal de satélite y el 

canal terrestre. 

 
 

                                                 
74 Wireless Local Loop 
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Figura 5.2 Arquitectura de red satélite 

 

Estación HUB “Nera” de Hispasat  

La estación HUB  “Nera” se encarga ofrecer el ancho de banda necesario de subida/de 

bajada a todos aquellos satélites que se conectan a Internet u a otras redes a través del 

satélite. Este equipo se compone de los siguientes componentes: antena, equipamiento de RF, 

gateway e interfaces terrestres con las redes necesarias que proporcionen servicios de banda 

ancha. La conectividad entre el HUB y los puntos de acceso satelital se basa en los estándares 

DVB-S en el sentido forward  (desde el HUB a los satélites) y DVB-RCS en el sentido return 

(desde los satélites a los terminales RCST). 

La banda de frecuencias utilizada es la banda Ku, transmitiéndose entre 14 y 14.5 GHz 

desde el HUB al satélite, y entre 12.25 y 12.75 GHz desde el satélite al HUB. 

 
Terminal de satélite SatLink de Hispasat 

Los terminales de satélite “SatLink” son los puntos de acceso del satélite y son los 

responsables de la interconexión con las redes de acceso del sistema. Están compuestos por 

dos unidades: 

• ODU: unidad exterior (VSAT) 

• IDU: unidad interior Nera SatLink 

La unidad exterior se compone por los siguientes elementos: 

• antena de 96 cm. de diámetro, con sus elementos de sujeción. 
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• alimentador 

• LNB (Low Noise Block)  

• BUC (Block Up Converter) 

• cableado RF en banda L.  

La figura 5.3 muestra un ejemplo 

de unidad exterior. 

 

 

 

La unidad interior  se llama “Nera SatLink”. Las interfaces que dispone y que se 

muestran en la figura 5.4 son: 

 

- Interfaz DVB-RCS para la conectividad con el satélite a través de la  unidad   exterior. 

La conexión entre dicha interfaz y la unidad ODU se realiza mediante un cable en 

banda L. 

- Interfaz Ethernet para la conectividad con las estaciones base WiMAX y WiFI. 

 

 

 

 Figura 5.4 Panel trasero del terminal de red con sus interfaces 

 

La tabla 5.1 describe cada uno de los componentes del panel trasero del terminal. 

 

Elemento Descripción 

Interruptor 

On/Off  

Interruptor de alimentación. On (I) o Off (0).  

Conector de 

alimentación 

Enchufe estándar para cables de alimentación. 

Conector COM1 Conector de 9 pines para conectar la interfaz de comandos de consola (CLI) a una 

interfaz serie RS-232 de ordenador. 

 
Figura 5.3 Unidad exterior 
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Conector Ethernet Conector RJ-45 para tráfico IP hacia/desde un PC, switch Ethernet, router IP etc. Los 

modos 10BASE-T o 100BASE-T se detectan automáticamente.  

Pulsador 

Node/Hub 

 

Selecciona la configuración HUB o NODE (nodo) en el puerto Ethernet. El modo 

HUB se selecciona normalmente cuando se conecta el terminal a un switch Ethernet 

o a un Hub Ethernet, mientras que  el modo NODE se usa al conectarse directamente 

a un solo PC (en vez de poner un cable cruzado). 

External I/O No usado. 

Coaxial Rx Jack coaxial de 75 Ω con conector tipo F para el cable de recepción de la ODU. 

Coaxial Tx Jack coaxial de 75 Ω con conector tipo F para el cable de transmisión de la ODU. 

Tabla 5.1 Elementos de conexión del panel trasero. 

 

La figura 5.5 muestra el terminal RCST empleado en el proyecto InterRural y sus 

características en la tabla 5.2. 

 

 
 

Figura 5.5 Terminal  de satélite “Nera Satlink 1901” 
 

Throughput máximo 

IP (después del filtro de MAC)                                             4 Mbps 

MPEG2 (después de filtro PID)                                            10 Mbps 

MPEG2 (antes de filtro PID)                                                 45 Mbps 

Forward Link 

Número de receptores del enlace de bajada                            1 

Tasa de símbolos                                                                 2-45 Msbs 

Modulación                                                                             QPSK 

FEC (Forward Error Correction)                           Reed-Solomon/Convolucional 

Return Link 

Tasa de símbolos                                                          128 Ksbs-3 Msbs 

Modulación                                                                             QPSK 

FEC                                                                      Turbo y  Reed-Solomon/Convolucional 

Frequency hopping                                                           Sí (saltos lentos) 

Formato de tráfico de bursts                                        ATM y MPEG 

Formato de los mensajes MAC                   Prefijo, DULM, SYNC, Contención basado en SYNC 
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Tipos de petición de capacidad                             CRA, RBDC, VBDC, FCA 

Interfaz ODU 

Número de cables                                                                          2 

Tipos de conector TX, RX                                                   tipo-F, 75 Ω  

Señales sobre el cable de TX                Datos, referencia de reloj, 24 VDC, canal de control 

Señales sobre el cable de TX                         Datos, 13/18 DC, canal de control 

Rango de frecuencia a la salida del TX                950-1460 MHz 

Niveles de señal a la salida del TX                       -40 dBm hasta +10 dBm 

Ruido de fase en TX                                 De acuerdo con las pautas del estándar DVB-RCS 

Niveles de señal a la entrada del RX                      -65dBm hasta -25 dBm 

Rango de frecuencia a la entrada del RX                 950-2150 MHz 

Canal de control en TX                          DiSEqC extendido usando 22 KHz PWK (de acuerdo      

                                             con las pautas del estándar DVB-RCS) 

Canal de control en RX                                  13/18 V y señalización 0/22KHz                                           

Tensión de alimentación TX                24V, 1.2A máx. Protección a corto circuito 

Tensión de alimentación RX                  13/18V, 500mA máx. Protección a corto circuito 

 
Características físicas y ambientales 

Tensión de alimentación                                       110-240 VAC, 50-60Hz 

Temperatura de operación                                    desde 0ºC hasta +40ºC 

Temperatura de almacenamiento                        desde -20ºC hasta +85ºC 

Humedad                                                             20% hasta 90%, no-condensación 

Tabla 5.2 Especificaciones del terminal Nera SatLink 

 
5.3.2 Arquitectura WiFi 

 
El estándar 802.11a de WiFi se ha desarrollado en el proyecto InterRural para un 

estudio comparativo con WiMAX en los diferentes escenarios descritos en  el punto 5.4. Este  

estándar de WiFi permite realizar radioenlaces punto a punto de 54 Mbps de throughput en 

condiciones con visibilidad directa y coberturas entre 1-1.5 Km. En el extremo del enlace 

inalámbrico implementado con 802.11a y cercano al usuario final, se realiza la conversión a 

802.11b/g para permitir la compatibilidad con los equipos de usuario y para una mayor 

flexibilidad en la arquitectura que se muestra en la figura 5.6. 
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Figura 5.6 Arquitectura WiFi 802.11a/b/g 

  

El punto de acceso 802.11a se localiza en el edificio principal, dispone de una antena 

sectorial de 90º  de ancho de haz, 17 dBi de ganancia y opera en la banda de 5.4 – 5.7 GHz.  

En el otro extremo del radioenlace, se utiliza un punto de acceso con dos unidades 

radio (802.11a, y 802.11b/g) y dos antenas. Una de las antenas se utiliza para el radioenlace 

punto a punto y se trata de una antena de panel direccional de 19 dBi en la banda de 5.4-5.7 

GHz. La otra antena es una omnidireccional de 8 dBi en la banda de 2.4 GHz usada para 

proporcionar acceso WiFi 802.11b/g. Las figuras 5.8-5.10 muestran las distintas antenas que 

se pueden emplear en la arquitectura de la figura 5.6.   

Los equipos WiFi utilizados son de la marca Orinoco y el modelo es el AP4000R. Las 

principales características que definen a este dispositivo son: 

- Instalación en exteriores, resistente a 

inclemencias del tiempo. 

- Soporte para dos unidades radio WiFi 

en bandas distintas: 802.11a y 

802.11b/g 

- Alimentación por cable Ethernet RJ-45. 

- 4 conectores para antenas externas. 

La figura 5.7 muestra uno de los puntos de 

acceso WiFi empleados en el demostrador y la 

tabla 5.3 las especificaciones técnicas. 

 
Figura 5.7 Punto de acceso Orinoco 

AP4000R 



Despliegue y análisis de la cobertura de una red WiMAX basada en IEEE 802.16-2004 
 
116 

 

Ítem Descripción 

Radio Punto de Acceso con doble unidades radio: 802.11a + 802.11b/g 

802.11b : 1, 2, 5.5 y 11 Mbps 

802.11g: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48 y 54 Mbps 

Throughput 

802.11a:  6, 9, 12, 18, 24, 36, 48 y 54 Mbps 

IEEE 802.11a 
Estándares de red 

IEEE 802.11b o IEEE 802.11g 

Uplink Autosensing 802.3 10/100BASE-T Ethernet 

802.11b/g:  2.412 -2.462 GHz Bandas frecuenciales 

802.11a: 5.15- 5.825 GHz 

Arquitectura de red Infrastructura 

802.11b: DSSS 

802.11g :OFDM 

Multiplexación 

802.11a: OFDM 

Protocolo de acceso 
al medio CSMA/CA 

OFDM BPSK @ 6 y 9 Mbps 

QPSK @ 12 y 18 Mbps 

16-QAM @ 24 y 36 Mbps 

64-QAM @ 48 y  54 Mbps 

DSSS DBPSK @ 1 Mbps 

DQPSK @ 2 Mbps 

Modulación 

CCK @ 5.5 y 11 Mbps 

Autenticación 

 

Soporte para 802.1X incluyendo los métodos PEAP, EAP-TLS, EAP-TTLS 
EAP-SIM, y otros métodos EAP que conforman el RFC 3748 para ofrecer 
autenticación mutua y llaves de encriptación dinámicas por sesión y por 
usuario.   
Direcciones MAC basadas con el protocolo RADIUS. 
Listas de control de acceso por MAC 

Encriptación 

 

Soporte 802.11i para llaves CCMP/AES de 128 bits (WPA2)  
Mejoras de la encriptación TKIP (para WEP) con signatura de llaves 
(llaves por paquetes) y rotación broadcast de llaves (WPA).   
Soporte WEP con llaves de 64 y 128 bits. 

Autenticación de 
mensajes 

Autenticación de mensajes encriptados mediante 802.11i AES con llaves 
de 128 bits. Verificación de la Integridad de Mensajes mediante TKIP con 
llaves de 128 bits.  

Tension de 
alimentación 802.3af (Power over Ethernet) y AC power 

Tabla 5.3 Especificaciones técnicas del punto de acceso Orinoco AP4000R 
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Figura 5.8 Antena sectorial 5.x GHz Figura 5.9 Antena panel 5.x GHz 

 
 
 

 Figura 5.10 Antena omnidireccional 2.4 
GHz 

 
5.3.3 Arquitectura WiMAX 

 
La arquitectura WiMAX empleada en el proyecto PROFIT se explica en el capítulo 3. 
 

5.4 Descripción del escenario  
 

El esquema del demostrador completo de la figura 5.11 muestra los diferentes 

escenarios con WiMAX y WiFi que se han llevado a cabo en la primera fase del proyecto.  
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Figura 5.11 Esquema completo del demostrador del proyecto InterRural 

 
Como se puede observar el demostrador es una comparativa entre WiMAX y WiFi 

802.11a en dos posibles escenarios: LOS y NLOS.  Los servicios utilizados en el demostrador 

son: 

- Videoconferencia con la aplicación ooVoo. 

- VoIP sobre WiMAX con un teléfono analógico. 

Ambos servicios utilizan el acceso a Internet vía satélite para la comunicación peer-to-peer.  

La figura 5.12 muestra la antena WiMAX omnidireccional instalada en el edificio 

universidad que se representa en el esquema completo de la figura 5.11.  

 

 
Figura 5.12  Antena omnidireccional de la estación base WiMAX  

instalada en el edificio ETSE de la universidad 
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La demostración que se realizó el día 28 de febrero de 2008 delante de la coordinadora 

del proyecto PROFIT InterRural del MINISTERIO DE INDUSTRIA, TURISMO Y 

COMERCIO, se basó en una comparativa entre las soluciones de banda ancha  WiFi 802.11a 

y WiMAX 802.16-2004 en dos posiciones que se indican sobre el mapa de la figura 5.13. En la 

posición 1 se tiene visibilidad directa y  en la posición 2 la visibilidad con las estaciones base 

WiMAX/WiFi se reduce debido a los obstáculos, la mayoría árboles, siendo un caso típico de 

un ambiente rural en el que aparecen prados, árboles y montañas. Las coordenadas de las 

posiciones indicadas así como su altura respecto el nivel del mar y la distancia a la estación 

base WiMAX/WiFi localizada en el edificio principal indicada como “A” se encuentran en la 

tabla 5.4 

 

Figura 5.13 Localizaciones exactas del demostrador en el campus de la UAB  
 
 

Posiciones de 
medida 

Coordenadas UTF Altura (m) Distancia a la BS  Escenario 

Estación base (A)  41.500068,2.11298 140 - - 

Posición 1  (B) 41.504142,2.10871 147 570 m LOS 

Posición 2 (C) 41.508626,2.09517 155 1.75 Km NLOS 

Tabla 5.4 Coordenadas y otras indicaciones de los puntos de interés mostrados  
en el mapa de la figura 5.13  
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5.5 Medidas obtenidas 
  

En esta sección se describen los resultados obtenidos en el demostrador para los 

sistemas Satélite, WiMAX y WiFi. Los resultados WiMAX son los que se han obtenido en las 

posiciones 1 y 2 mientras que los resultados de WiFi son los obtenidos en la posición 1. Se 

demuestra que WiFi 802.11a ofrece mayor throughput que el estándar WiMAX utilizado en el 

proyecto en entornos con visibilidad directa (posición 1) con la antena transmisora. Para 

entornos sin visibilidad directa (posición 2)  entonces WiMAX supera en cuanto a throughput 

el estándar de WiFi  IEEE 802.11a.  

 

5.5.1 Medidas del enlace vía satélite 
 

Para poder ofrecer un enlace vía satélite con Hispasat se orientó la antena de la 

unidad exterior o ODU al satélite de Hispasat 1D (30º oeste). Posteriormente se realizó la 

configuración del terminal RCST con los parámetros de red establecidos por Hispasat 

además de fijar la potencia de señal óptima de transmisión. La figura 5.14 muestra 

información referente a la configuración de red establecida en el terminal IDU Nera SatLink. 

 
 

Identificación del terminal    
Nombre   SBA-INTERRURAL-01 MAC add. 00:60:C0:2F:AD:48 

 
 

 

 

Configuración IP   
Ip DVB 192.168.255.54 Máscara 255.255.255.0 
Ip Red Eth. 192.168.26.80 Máscara 255.255.255.240 
Ip ethernet  192.168.26.81 Máscara 255.255.255.240 
Ip NAT  Máscara   

Figura 5.14 Configuración del terminal de satélite 

 
 

El enlace de satélite durante el demostrador presentaba los siguientes parámetros de 

canal: Eb/No = 8 dB y SNR: 12.7 dB. Una vez el enlace de satélite entró en operación se 

realizaron medidas de tráfico IP con el programa “NetPerSec” para verificar el ancho de 

banda acordado por Hispasat en los enlaces forward/return. Los resultados o medidas sobre 

las velocidades de los enlaces forward y return presentados en las figuras 5.15 y 5.16 

presentan unos valores de 850 Kbps y 252 Kbps respectivamente.  
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Figura 5.15 Enlace descendente (forward) 

(aproximadamente 1Mbps) 

Figura 5.16 Enlace ascendente  (return) 

(aproximadamente 256Kbps) 

 
5.5.2 Medidas WiMAX 

 
La tabla 5.5 muestra los resultados obtenidos del radioenlace WiMAX en las 

posiciones 1 y 2 del mapa de la figura 5.13.  

 
 Posición 1 Posición 2 

Potencia de Tx  (dBm) 20 20 

SNR recibida (dB) 34 28 

Wireless Data Rate (Mbps) 12  12  

TCP Throughput (Mbps) 4.36 4.31 

Tabla 5.5 Parámetros del radio enlace WiMAX obtenidos en la posición 1 del mapa de la figura 5.13 

empleando el terminal de usuario outdoor PRO-DMe-SA 

 
5.5.3 Medidas WiFi 

 
Los resultados obtenidos por la tecnología WiFi 802.11a en la posición 1 se muestran en 

la tabla siguiente. En la posición 2 del mapa de la figura 5.13 no se recibe señal WiFi 802.11a 

debido a que este estándar requiere visibilidad directa con el punto de acceso WiFi al 

funcionar a una frecuencia superior a la de WiMAX.  

En la tabla 5.6 también aparecen los parámetros físicos del estándar WiFi 802.11g 

utilizado en el extremo del enlace WiFi 802.11a más cercano al usuario final actuando como 

una red WLAN tal y como se muestra en el esquema del demostrador completo de la figura 

5.11 o en el esquema de la arquitectura WiFi de la figura 5.6.  
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 WiFI 802.11a WiFI 802.11g 

Potencia de Tx  (dBm) 17 17 

SNR recibida (dB) 18  22 

Wireless Data Rate (Mbps) 48 54 

TCP Throughput (Mbps) 17 20 

Tabla 5.6  Parámetros del radioenlace WiFI 802.11a y WiFI 802.11g obtenidos en la posición 1 del 

mapa de la figura 5.13 

 
5.5.4 Comparativa de WiMAX y WiFi 802.11a 

 
En esta sección se comparan las dos tecnologías de banda ancha WiFi 802.11a y WiMAX 

capaces de proporcionar enlaces vía radio con una elevada velocidad de bits o wireless data 

rate y elevada fiabilidad superiores a las ofrecidas por ADSL y otras tecnologías actuales en 

la ultima milla. Si se comparan los resultados de los parámetros del enlace WiMAX y de los 

del enlace WiFI obtenidos en la primera posición se observa que: 

- La SNR recibida de WiMAX es superior a la SNR recibida de WiFi.  

- El throughput del radioenlace es 4 veces mayor en WiFi  (48 Mbps) que en WiMAX 

(12 Mbps). 

- El throughput TCP conseguido por WiFi es bastante superior al conseguido por 

WiMAX. 

- La potencia de transmisión del equipo WiFi es 3 dB inferior a la del equipo 

WiMAX. 

Por lo tanto los resultados obtenidos confirman que el estándar de WiFi 802.11a supera a 

la tecnología WiMAX  empleada en entornos donde existe visibilidad directa con el punto de 

acceso WiFi, es decir, WiFi 802.11a solamente puede trabajar correctamente en escenarios 

LOS. En escenarios NLOS, la ventaja es para WiMAX que es capaz de ofrece SNR altas 

permitiendo conectividad con la estación base WiMAX.  Las ventajas de WiMAX frente a 

WiFi 802.11a son: 

- Mayor número de portadoras, en concreto 4 veces mayor. WiMAX 802.16-2004 

ofrece 256 portadoras OFDM  mientras que WiFi solamente 64 portadoras OFDM. 

- WiMAX dispone de diferentes anchos de banda en la capa física. En el proyecto se 

ha utilizado un ancho de banda de 3.5 MHz. No obstante existen estaciones base 
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más potentes que la micro estación base WiMAX del proyecto capaces de ofrecer 

throughputs hasta 75 Mbps empleando el mismo ancho de banda que WiFI de 20 

MHz. 

- WiMAX puede trabajar en escenarios NLOS con diversidad de obstáculos. 

- Las estaciones base WiMAX son capaces de transmitir a potencias superiores que 

los puntos de acceso WiFi. La micro estación base WiMAX del proyecto transmite 

hasta 38 dBm de PIRE existiendo en el mercado estaciones base WiMAX de más 

prestaciones. 

- WiMAX puede ofrecer QoS a sus estaciones suscritoras mientras que el estándar 

802.11a no lo contempla. 

- WiMAX es un tipo de tecnología WMAN y por lo tanto puede ofrecer 

conectividad a un gran  número mayor de usuarios, superior a las que ofrece 

WiFI. Por ejemplo la micro estación base WiMAX puede suportar un máximo de 

250 unidades suscritoras.  

 
Para finalizar, la  tabla 5.7 resume las comparativas entre WiMAX y WiFi: 
 

 802.11 802.16 Explicación técnica 
Cobertura • Máximo de 300 m. 

• Para mayor 

cobertura se 

necesitan más 

puntos de acceso o 

antenas directivas. 

• Optimizado para 

coberturas en 

interiores. 

 

• Hasta 50 Km. 

Dependerá del tipo de 

estación base. 

• Optimizado para 

coberturas en exteriores. 

• El estándar de WiMAX 

ofrece la posibilidad de 

suportar tecnicas de 

antenas avanzadas y 

mesh. 

• La capa PHY de 

WiMAX tolera 10 

veces más el 

retardo 

multicamino que  

801.11. 

• Modulación 

adaptativa 

Escalabilidad • Ancho de banda de 

canal fijo de 20 MHz 

• Ancho de banda de 

canal flexible, desde 1.5 

MHz hasta 20 MHz para 

bandas licenciadas y no 

licenciadas.  

• Reutilización de 

• 802.11b. Solamente 

soporta 3 canales 

no solapados. 

802.11a soporta 5.  

• 802.16: Limitado 

solo por el espectro 
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frecuencias (mediante 

sectorización). 

• Habilita la planeación de 

celdas para WISPs. 

disponible. 

Eficiencia 
espectral • Valor máximo: 2.7 

bps/Hz; hasta 54 

Mbps en canal de 20 

MHz. 

• Máximo: 3.8 bps/Hz; 

hasta 75 Mbps en canal de 

20 MHz. 

• 5bps/Hz→ 100 Mbps en 

canal de 20 MHz. 

• 802.16: 256 OFDM  

versus 64 OFDM en 

802.11. 

 
 

QoS • Los estándares 

comerciales (a,b,g) 

no soportan QoS.  

• QoS para suportar 

voz/video, servicios 

diferenciados. 

• 802.11: MAC basado 

en contención 

(CSMA) 

• 802.16: MAC basado 

en solicitud 

garantizada 

Tabla 5.7 Comparativa entre WiFi 802.11 y WiMAX 802.16 

5.6 Conclusiones del proyecto InterRural 
 

En este capítulo se han presentado los resultados obtenidos en la campaña de medidas 

del proyecto InterRural realizado en el campus de la Universidad Autónoma de Barcelona.  

Para llevar a cabo estas medidas se ha implementado un demostrador basado en una 

red híbrida integrando conexión vía satélite (para unir la zona rural con la red troncal de 

Internet) con redes de acceso terrestres (encargadas de hacer llegar la conexión Internet a las 

zonas rurales remotas). En esta primera fase del proyecto se han considerado las tecnologías 

de acceso WiFi y WiMAX. La segunda fase del proyecto con la integración de la tecnología 

PLC se realizará en principio el próximo año. 

A partir de los resultados obtenidos en el demostrador, se ha validado que la solución 

WiMAX es totalmente viable para dar servicio Internet a zonas rurales. Se ha demostrado 

que servicios que requieren elevados anchos de banda como son los de videoconferencia, se 

pueden llevar a cabo con una alta calidad. Además, se ha probado que estas prestaciones se 

pueden conseguir a unas distancias de unos 1.5 - 2 Km entre la estación base y el terminal de 

usuario.  

En cuanto a la comparación entre tecnologías WiFi y WiMAX, se ha observado que la 

primera de ellas es más apropiada para entornos donde existe visibilidad directa ofreciendo 
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velocidades de transmisión obtenidas en la descarga de ficheros del orden de 20 Mbps frente 

a los 5 Mbps con WiMAX y la cobertura no pretende ser superior a 1-1.5 Km. En caso 

contrario, es más apropiado apostar por la tecnología WiMAX debido a su superior robustez 

frente las pérdidas de propagación y la aparición de obstáculos.  

5.7 Divulgación  del proyecto InterRural 
 

En primer lugar se anuncia que se han aceptado en la URSI75 dos artículos valorados 

con notas de 4 y 5 (el 5 es excelente) con título “InterRural: Internet Rural mediante Redes 

Heterogéneas e Itinerantes” cuyos autores son Albert Anglès, Gonzalo Seco, José López 

Vicario, y todos los que han participado en el proyecto provenientes de las conocidas 

empresas.  

En segundo lugar el proyecto InterRural se divulgó en diferentes medios de 

comunicación: televisión, radio y prensa. En el caso de la televisión participó Televisión local 

de Barcelona con José López Vicario como locutor. La figura 5.17 muestra una demostración 

de una videoconferencia WiMAX ante la televisión española tve1 el día 28 de febrero del 

2008 (no se llegó a transmitir). 

 

 
Figura 5.17 Demostración a tve1 de una videoconferencia con WiMAX a 

una distancia de 1.3 Km de la BS 

 

                                                 
75 Union Radio-Scientifique  Internationale 
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 En el caso de la radio, radio4 entrevistó a los coordinadores del proyecto InterRural: 

Gonzalo Seco y José López.  Varios medios de prensa como es el periódico u otros que se 

referencian más a bajo también dieron a conocer al público la importancia que presenta este 

proyecto en que combinan diferentes tecnologías de banda ancha integradas con satélite para 

ofrecer una mejor alternativa a aquellas zonas rurales o casa aisladas de la ciudad con 

escasas alternativas de comunicación   

 

La figura 5.18 muestra uno de los artículos publicados en el periódico.  

 

Figura 5.18 Divulgación del proyecto InterRural en el periódico. 

 

Otras de las divulgaciones en otros artículos de prensa se pueden encontrar en los 

siguientes enlaces web: 

- http://www.lamalla.net/digitals/article?id=190823 

- http://www.deminorias.com/noticia.php?ID=12173 

- http://www.noticiesdot.com/2008/02/28/investigadors-de-la-uab-posen-a-

punt-un-sistema-d%E2%80%99acces-a-internet-de-qualitat-optima-per-a-zones-

rurals/ 

- http://www.universia.es/rssNoticias/universidad/uni-UAB.xml 

- http://www.hoytecnologia.com/noticias/Investigadores-elaboran-sistema-

hibrida/47116 
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6 CONCLUSIONES 
 

 

 

En este proyecto final de carrera se ha podido experimentar por primera vez el 

despliegue de una red WiMAX 802.16-2004 con algunos de los equipos que ofrece Alvarion. 

Este proyecto ha servido para aprender a configurar una estación base comercial WiMAX y 

una vez en funcionamiento se ha podido analizar su cobertura en diferentes entornos: 

entorno indoor y entorno outdoor. En ambos entornos se han obtenido modelos empíricos 

simplificados de path loss a partir de medidas empíricas realizadas con los terminales 

WiMAX.  

En el caso de outdoor se han definido dos escenarios: escenario semi-urbano y 

escenario semi-rural. En cada escenario outdoor se ha analizado la cobertura que ofrece 

WiMAX y se han obtenido modelos de propagación empíricos aproximados a partir de 

medidas realizadas en varios puntos (equiespaciados 100m, exceptuando el escenario semi-

urbano donde se han tomado en distintas distancias no equiespaciadas por el impedimento 

de los obstáculos). El resultado es que en el entorno semi-urbano, tipo campus universitario, 

la calidad del radioenlace WiMAX es débil obteniendo 3<γ < 3.5 debido a la gran diversidad 

de obstáculos a los que se enfrenta WiMAX. En cambio en ambientes más robustos como un 

caso semi-rural, se obtienen 2<γ<3. 

En el caso indoor se ha utilizado un modelo que tiene en cuenta las pérdidas de 

propagación en condiciones con visibilidad directa así como el número de paredes y su 

atenuación de las paredes y el número de entresuelos y su atenuación. Se han realizado 

medidas en diferentes puntos localizados en plantas diferentes en el interior de un edificio  

para comprobar la validez del modelo. El modelo encontrado para estimar las pérdidas de 

propagación en entorno LOS se ha realizado en un pasillo de unos 150 m de largo dando un 

resultado de una γ = 1.83, valor coherente por el efecto de que el pasillo actúa como si fuese 

una guía de ondas (hay reflexiones por todos los laterales). 
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  Por último, este proyecto ha formado parte de la primera fase de un proyecto 

nacional llamado InterRural en el que se ha integrado WiMAX con satélite y se han realizado 

demostraciones y comparativas entre WiMAX y la variante WiFi 802.11a en diferentes 

situaciones: LOS y NLOS. Se ha demostrado que WiMAX es una alternativa frente a WiFi en 

situaciones NLOS. En situaciones LOS WiFi puede ofrecer throughputs hasta 54 Mbps. El 

sistema WiMAX empleado ha sido la variante de acceso fijo con un throughput de 12 Mbps 

tanto en downlink como en uplink,  no obstante WiMAX puede ofrecer throughputs de hasta 70 

Mbps en canales de 20 MHz en condiciones LOS (hasta 50 Km) y punto a punto fijo.  
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Resum 
 Aquest projecte tracta de l’estudi de la cobertura WiMAX basada en la variant 802.16-2004 en 

la que opera a 3.5 GHz en diferents escenaris d’un campus universitari. Primerament es realitza una 

introducció general a WiMAX i es defineixen els equips utilitzats. Posteriorment es comença a dur a 

terme un estudi de la cobertura WiMAX en diferents escenaris: indoor y outdoor per tal de poder 

extreure models empírics simplificats de path loss a partir de mesures realitzades amb els terminals 

WiMAX. Per últim, s’introdueix al projecte InterRural del MINISTERI D’INDUSTRIA, TURISME I 

COMERÇ dut a terme durant els mesos Octobre 2007-Març 2008 amb altres empreses col·laboradores: 

Telefònica, Hispasat, Gigle i Iber-X. La finalitat del projecte InterRural és comparar diferents  

tecnologies wireless de banda ample com alternatives per un bucle local ràdio de la última milla. En 

concret es comparen experimentalment les tecnologies WiMAX i WiFI 802.11a en diferents escenaris: 

LOS i NLOS.  

 Resumen 
Este proyecto trata del estudio de la cobertura WiMAX basada en la variante 802.16-2004 en la 

que opera a 3.5 GHz en diferentes escenarios de un campus universitario. Primeramente se realiza una 

introducción general a WiMAX y se definen los equipos empleados. Posteriormente se empieza a 

llevar a cabo un estudio de la cobertura WiMAX en diferentes entornos: indoor y outdoor con la 

finalidad de extraer modelos empíricos simplificados de path loss partiendo de  las medidas obtenidas 

con los terminales WiMAX. Por último se introduce al proyecto InterRural del MINISTERIO DE 

INDUSTRIA, TURISMO Y COMERCIO llevado a cabo durante los meses Octubre 07-Marzo 08 con 

otras empresas colaboradoras: Telefónica, Hispasat, Gigle y Iber-X. La finalidad de este proyecto 

InterRural es comparar diferentes tecnologías wireless de banda como alternativas para un bucle local 

radio de la última milla. En concreto las tecnologías de banda ancha comparadas experimentalmente 

en dos tipos de escenarios: LOS y NLOS son WiMAX y WiFI 802.11a. 

Abstract 
 This thesis consists of studding the WiMAX coverage based over the IEEE 802.16-2004 

standard operating at 3.5 GHz in different scenarios of a university campus. Firstly it realizes a 

general introduction to the WiMAX as one of the considered BWA (Broadband Wireless technology) 

and then it defines the employed equipment. Subsequently it begins to study the WiMAX coverage at 

different environments: indoor and outdoor with the aim to extract simplified empirical path loss 

models using the measurements obtained by WiMAX terminals. Finally it introduces to the InterRural 

project of the Spain’s Ministry of Industry realized between October 2007-March 2008 with other 

colaborator enterpirses such as Telefonica, Hispasat, Gigle and Iber-X. The aim of InteRural’s project is 

to compare different wireless broadband access technologies like WiMAX and WiFI 802.11a as WLL 

(Wireless Local Loop) alternatives. Both technologies have been put in practice in two scenarios: LOS 

and NLOS just for comparison. 


